

UNIVERSITY "SS. CIRYL AND METHODIUS" MEDICAL FACULTY, CLINIC OF NEPHROLOGY SKOPJE, R. N. MACEDONIA

PROLONGED DURATION OF VASCULAR ACCESS FOR HEMODIALYSIS

Dejanov P, Pusevski V, Gjorgievski N, Janevski Z, Spasovski G, Gramatnikovski N.

INTRODUCTION

The number of patients with Renal replacement therapy per year for R. N. MACEDONIA (2002 – 2022)

Vascular access for hemodialysis

- Common site and frequency (%) of venous obstruction in hemodialysis (HD) patients.
- Due to the complications of conventional vascular access (VA) for HD, the great challenge is to solve them by using other VA.
- The creation of VA for patients on HD is a great challenge in vascular surgery regarding chronic renal failure (CRF).
- A permanent VA is the life saving procedure in HD patients.

To present our experience in creation of VA modalities for HD as procedures related to prolonged duration with less complications in clinical practice.

MATERIAL AND METHODS

A NUMBER OF CASES OF VA FOR HD 2003 - 2022

VA	Number of cases		
Permanent VA			
AVF	5798 (83%)		
тсс	1199 (17%)		
Temporary VA			
FC	16682		
JC	787		
SC	1066		
TOTAL	25532		

Permanent VA for HD at our Clinic (2003-2022)

AVF – arteriovenous fistula; TCC – tunneled central catheters;

Temporary VA for HD at our Clinic (2003-2022)

FC – femoral catheter; JC- jugular catheter; SC – subclavian catheter

Type of used catheter regarding different issues, insertion and removal

lssues	Types	Insertion	Removal	
Lumen numbers	Single Dual	 Seldinger technique 	 AVF maturation 	
Lasting period	Temporary Permament	 strict aseptic condition in local anasthesia 2% chlor-hexidine occlusive dressing 	• infection (CRB – catheter related	
Ruth location	Femoral Sublavian Jugular		bacteriemia: •fever >38,5 °C, leucocytosis >CBP	
Used material	Polyurethan Silicon		identical micro- organism type in blood	
Catheter lenght	15cm 20cm 24cm		and on catheter tip)inadequate blood flow	

Conventional AVF protocol

AVF protocol characteristics				
Anastomosis type	Latero-terminal (5-6cm)			
Anastomosis location	Wrist (between radial artery and cephalic vein)			
Time of anastomosis creation	IV – V stage of renal insufficiency			
Required pre-condition	No cannulation of veins prior AVF creation			
Required check	Doppler mapping of blood vessels			
Recommended action	Hand muscle exercise			
Surgery protocol	Use of loupes, A/V dilatation, vein preparation <3cm			

RESULTS and DISCUSSION

TYPES OF VA MODALITIES FOR HD RELATED TO DURATION 2003 - 2022

VA modalities	Number of cases	F	Μ	Duration
Femoral artery cannulation	15	10	5	< 3 weeks
Necless AV graft	1	1	0	< 1 month
Sapheno-femoral AV graft	2	2	0	< 1 year
V. Azygos cannulation	3	3	0	< 3 years
Translumbar cannulation of VCI	3	3	0	< 3 years
Bypass from BCV to RA – graft & Thesio II	1	1	0	< 4 years
Aneurysmorrhaphy	30	19	11	< 5 years

Indications for VA for HD in our patients

Tortuous intercostal veins and v. azygos (enlargement)

Stenosis of v. cava superior and thrombotic mass at right atrium

Indications for cannulation of IJV and SCV

Colateral circulation due to stenosis of v. subclavia Thrombotic masses in right atrium

Translumbar cannulation of VCI

Placement of permanent translumar catether in VCI

Performing HD through translumbar catether

Reinforced aneurysmorrhaphy technique

- (A) Venous arm of the fistula mobilised up to the non-dilated part of the vein;
- (B) Resection of aneurysms using BalRok clamp;
- (C) Vein wall remaining after aneurysm resection sewn with a continuous running suture;
- (D) Repaired vein after aneurysmorrhaphy;
- (E) Implantation of external mesh prosthesis;
- (F) Repaired vein tunnelled subcutaneously and reanastomosis.

Rokosny S et al. Reinforced aneurysmorrphaphy for true aneurysmal haemodialysis vascular access. European J Vasc End Surgery 2014; 1-7.

AVF characteristics and surgical indications

Variable	n (%)
Type of AVF	
Forearm	
Radial-cephalic fistula	39 (63)
Ulnar-cephalic fistula	1 (2)
Upper arm	
Brachial-cephalic fistula	15 (24)
Brachial-basilic fistula	7 (11)
AVF characteristics	Mean \pm SD (range)
Number of aneurysms	2.33 ± 0.57 (1.00 -3.00)
Maximum aneurysm	34.47 ± 7.33 (20.00-55.00)
diameter (mm)	
AVF survival (y)	9.03 ± 6.07 (2.00-29.00)
Indication	n (%)
High-flow AVF	24 (39)
Pain overlaying skin	15 (24)
Progressive enlargement	12 (19)
Bleeding	5 (8)
Steal syndrome	3.0 (4.5)
Stenosis	2 (3)
Thrombosis	1.0 (1.5)

Rokosny S, Balaz P, Wohlfahrt P, Palous D, Janousek L. Reinforced aneurysmorrphaphy for true aneurysmal haemodialysis vascular access. European J Vasc End Surgery 2014; 1-7.

Postoperative complications after aneurysmorraphy

COMPLICATIONS	NUMBER OF PATIENTS	% OF PATIENTS
Bleeding	3	10
Hematoma	2	6.66
Infection	1	3.33
Dermal necrosis	1	3.33
Temporary catheterization for HD	4	13.3

CONCLUSION

Due to the complications after conventional used access for HD, we have performed: a. femoralis, v. azygos, sapheno-femoral AVFs, translumbar cannulation of VCI, bypass from VBC to RA with graft, Thesio-catether insertion, and aneurysmorrhaphy.

□ Aneurysmorrhaphy may be an effective method for treating aneurysmal AVF, showing excellent long term patency, no aneurysmal reccurence, and a minimal infection rate. It appears to be suitable for high flow AVF.

□ The used modalities succeeded to prolong VA duration and improve HD patients' longevity and quality of life, thus they may be used as last life saving procedures in CRF.

UNIVERSITY "SS. CIRYL AND METHODIUS" MEDICAL FACULTY, CLINIC OF NEPHROLOGY SKOPJE , R. N. MACEDONIA

THANK YOU FOR YOUR ATTENTION!