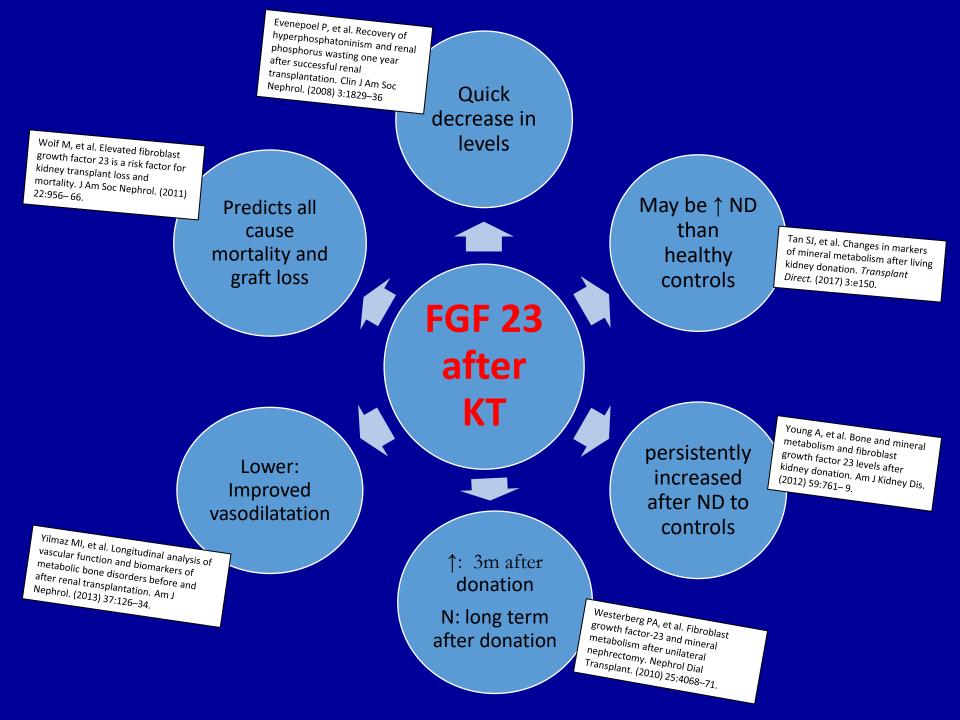
Mineral Bone Disease after Kidney Transplantation

Dr Jean Filipov , PhD UH Alexandrovska Sofia, Bulgaria

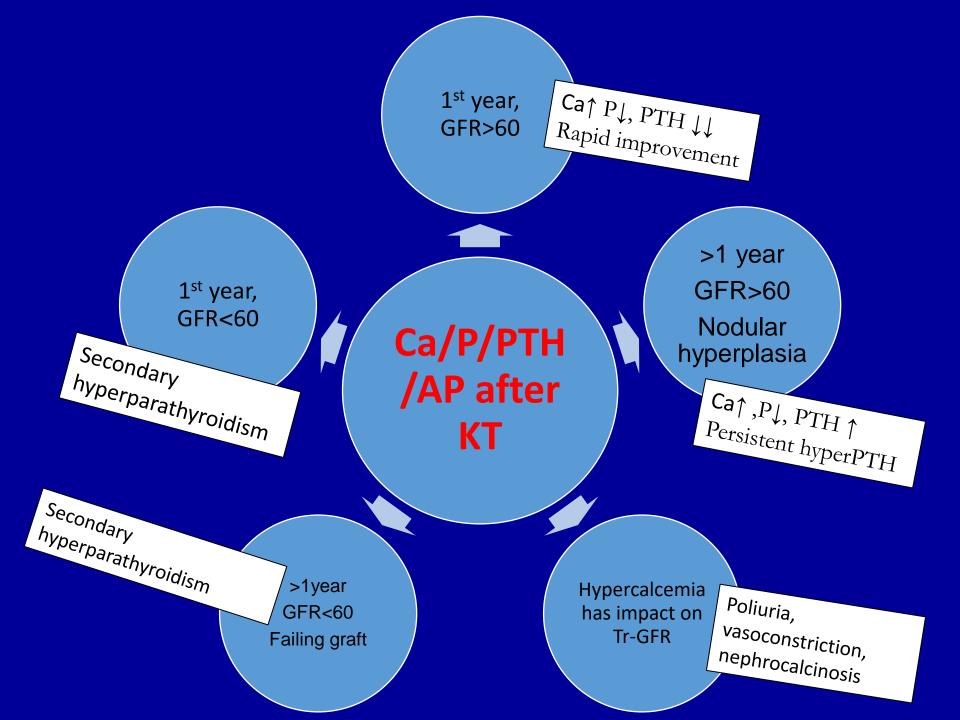
Plan of the presentation

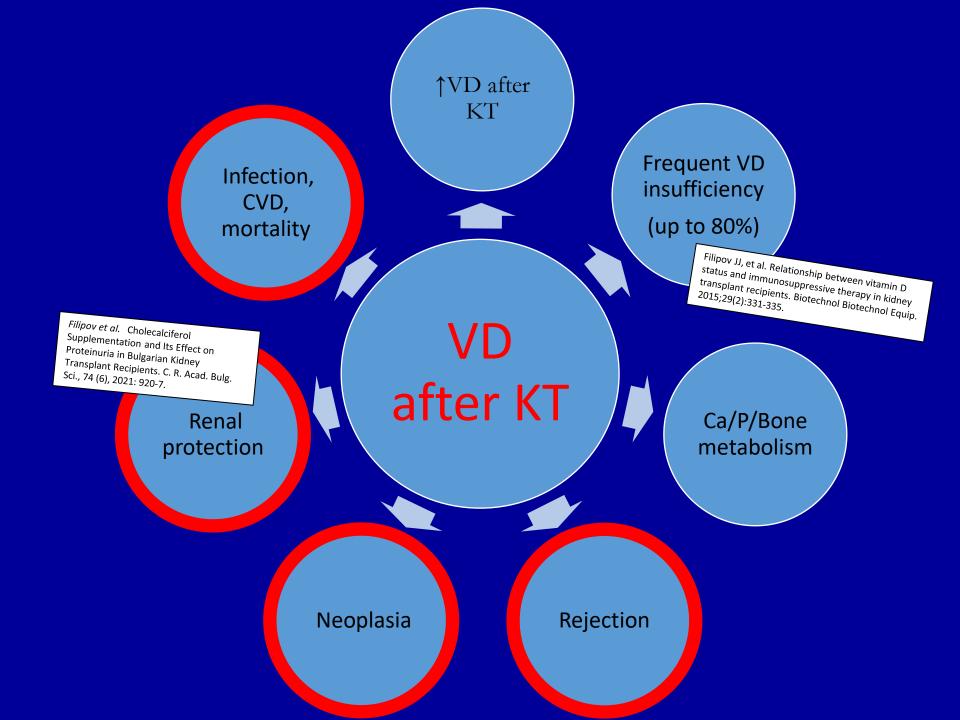
- 1. Biochemical abnormalities after kidney transplantation (KT)
- 2. Bone disease after KT
- 3. Vascular involvement after KT
- 4. Treatment

1. Biochemical abnormalities after KT

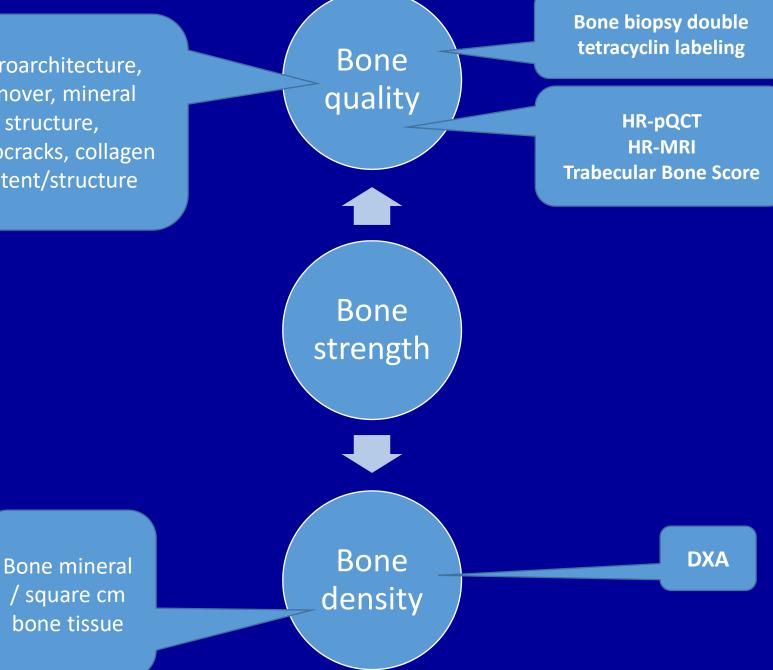

- Depend on the kidney function after KT
- Depend on dialysis duration
- Rapid change over the first 6-12 months post-transplant

After successful KT


Paramether	Pre-Tx	Post-Tx – 3 mo	Post-Tx – 12 mo
FGF 23	ተተ	עע, rapid N	N
sKlotho	$\downarrow \downarrow$	7	↓/ N
РТН	ተተ	٦	Mostly N
Са	\checkmark	7	Mostly N
Phosphate	ተተ	لا لا hypophosphatemia risk	Ν
25-OH Vitamin D	$\checkmark \uparrow$	\checkmark	\checkmark


After successful KT

Paramether	Post-Tx	Clinical importance
FGF 23	עע, rapid N	Reduced mortality + CVD
sKlotho	7	Unclear data, better GFR ? No importance ?
РТН, АР	Ъ	Improved bone health
Са	7	Improved bone and vascular health
Phosphate	لا لا hypophosphatemia risk	Improved bone and vascular health
25-OH Vitamin D	$\mathbf{\Lambda}$	Ca/P and pleiotropy



2. Post-transplant bone disease

Post-transplant bone disease

- Osteoporosis
- Renal osteodystrophy
- Osteonecrosis
- Bone fracture

Microarchitecture, turnover, mineral structure, microcracks, collagen content/structure

Factors, influencing bone health after KT

Traditional	CKD related	Transplantation-related
Malnutrition	↑ PTH	Steroid use
Age	↓VD	Cumulative steroid dose
Hypogonadism	Systemic inflammation	Persistent ↑PTH
Smoking	Metabolic acidosis	Other IS agents
Lower BMI	Dialysis vintage	Deceased donor
Low physical activity	History of glomerulonephritis	Low GFR
Females		Diabetes
Family history of osteoporosis		Hypomagnesemia
History of fractures		
Diabetes		

Post-KT bone disease: epidemiology & significance

- Major BMD loss 1 st year post-transplant
- Higher risk for fracture first 6 months
- Major fracture sites:

distal (ankle/foot/radius)> hip > spine

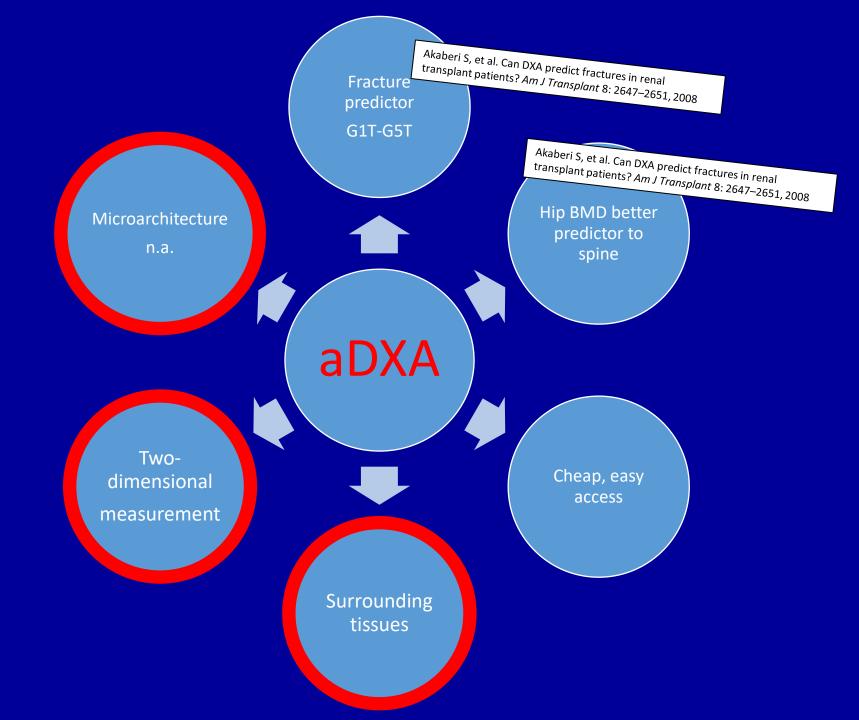
- Fractures→ increased mortality (hip + spine)
- Decreasing fracture rates over the last years

Iseri K, et al. Fractures after kidney transplantation: Incidence, predictors, and association with mortality. Bone. 2020;140:115554.

Bouquegneau A, et al. Bone Disease after Kidney Transplantation. Clin J Am Soc Nephrol. 2016;11(7):1282-1296.

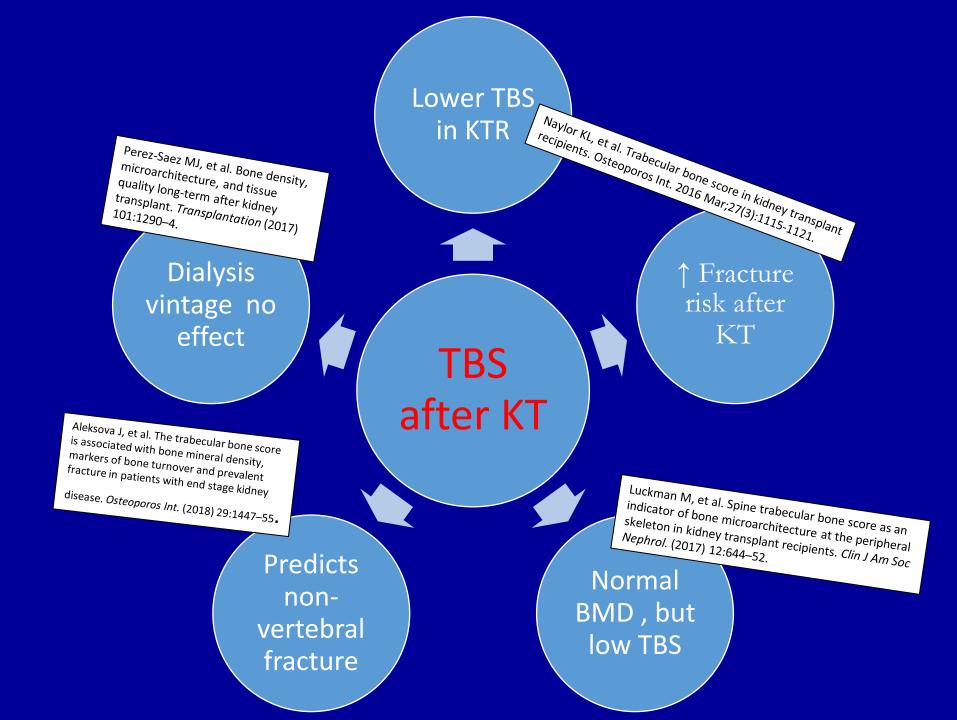
Bone disease: KT vs dialysis

	Dialysis	Post-transplant
Location	Нір	Distal skeleton
Pathogenesis	CKD, general factors	+ Post-transplant (IS, rejection, donor)
Total fracture risk	Inconsistent results	Inconsistent results
Hip fracture risk	Higher	Lower
Mortality	Higher	Lower
Bone turnover	↑/↓ (PD/HD)	Further \downarrow (CS)
Trabecular volume	Ν	Steroid-dependent decrease

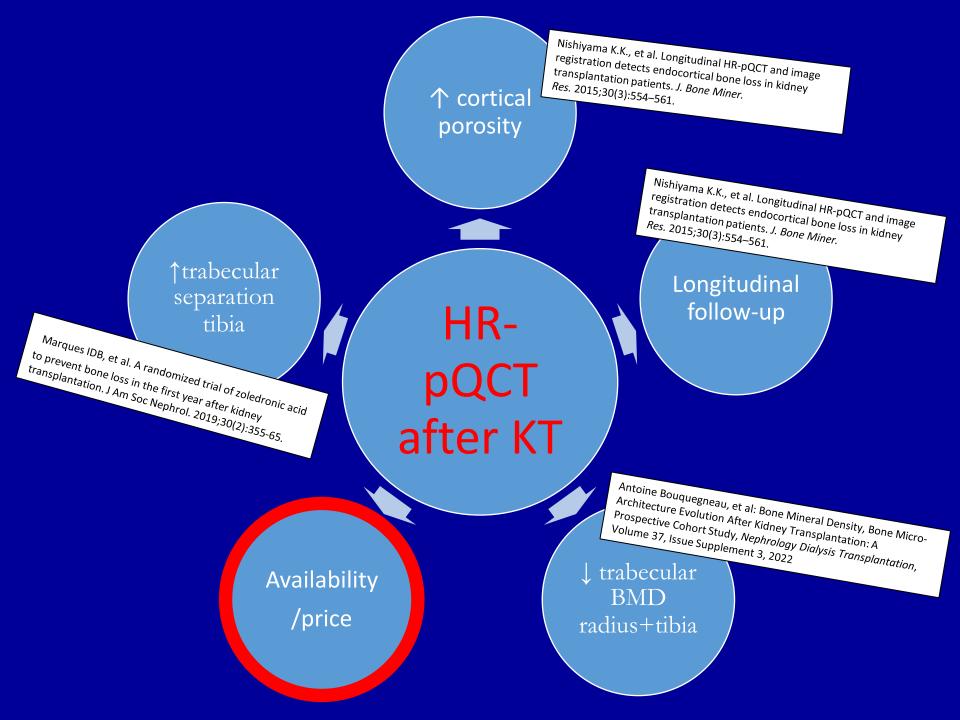

S. Keronen, et al. Changes in bone histomorphometry after kidney transplantation Clin. J. Am. Soc. Nephrol., 14 (6) (2019), pp. 894-903

P. Evenepoel, et al. Bone histomorphometry in de novo renal transplant recipients indicates a further decline in bone resorption 1 year posttransplantation. Kidney Int., 91 (2) (2017), pp. 469-476

Post-transplant bone disease: diagnosis


- Imaging techniques : DXA, TBS, HR-pQCT
- Serum markers: bone formation/resorption
- Bone histology

A. Imaging


Trabecular bone score (TBS)

- Based on previous lumbar spine DXA
- Software re-analyzed information
- Evaluates pixel gray-level variations
- Indicates bone microarchitecture
- Evaluates bone strength

High-resolution peripheral quantitative computed tomography (HR-pQCT)

- CT extremity scanner, imaging up to 3 min
- Obtains 3D bone geometry
- Bone density overall, compartment specific
- Microarchitecture evaluation
- Tested regions: distal radius/tibia
- Radiation 3 μ Sv, DXA 9 μ Sv

High resolution MRI (HR-MRI)

- MRI technique
- Distal extremities
- Proximal femur evaluation also possible
- Similar to HR-pQCT information obtained
- Higher strength of MRI better clinical correlation

MRI+TBS outperform DXA+pQCT

HR-

MRI

Sharma, AK, et al. Changes in bone microarchitecture following kidney transplantation—Beyond bone mineral density. *Clin Transplant*. 2018; 32:e13347.

Decreased cortical bone

Rajapakse CS, et al. Micro-MR imaging-based computational biomechanics demonstrates reduction in cortical and trabecular bone strength after renal transplantation. Radiology. 2012 Mar;262(3):912-20. Rajapakse CS, et al. Micro-MR imaging-based computational biomechanics demonstrates reduction in cortical and trabecular bone strength after renal transplantation. Radiology. 2012 Mar;262(3):912-20.

Decreased trabecular bone

B. Serum markers

Bone formation	Bone resorption	Turnover regulators
tALP	Deoxypyridinoline	Receptor activator of NF-кВ ligand (RANKL) ↑ resortpion
bALP	Hydroxylysine	Osteoprotegerin ↓osteoclastogenesis
Osteocalcin	Pyridinoline	Dickkopf-1 ↓ formation
Procollagen type 1 N-terminal Propeptide	Bone Sialoprotein	Sclerostin ↓ formation
Procollagen type 1 C-terminal Propeptide	Osteopontin (OP)	
	Cathepsin K	
	Carboxy-terminal Crosslinked Telopeptide of type 1 collagen (CTX-1) (β Crosslaps)	
	Tartrate-resistant acid Phosphatase 5b (TRAP 5b)	
	Amino-terminal Crosslinked Telopeptide of type 1 collagen	
	PTH	

In the general population

Bone formation	Bone resorption	Turnover regulators
tALP	Deoxypyridinoline	Receptor activator of NF-кВ ligand (RANKL) ↑ resortpion
bALP	Hydroxylysine	Osteoprotegerin ↓osteoclastogenesis
Osteocalcin	Pyridinoline	Dickkopf-1 ↓ formation
Procollagen type 1 N-terminal Propeptide	Bone Sialoprotein	Sclerostin ↓ formation
Procollagen type 1 C-terminal Propeptide	Osteopontin (OP)	
	Cathepsin K	
	Carboxy-terminal Crosslinked Telopeptide of type 1 collagen (CTX-1) (β Crosslaps)	
	Tartrate-resistant acid Phosphatase 5b (TRAP 5b)	
	Amino-terminal Crosslinked Telopeptide of type 1 collagen	
	РТН	

In the general population + CKD 1-2 ?

Bone formation	Bone resorption	Turnover regulators
tALP	Deoxypyridinoline	Receptor activator of NF-кВ ligand (RANKL) ↑ resortpion
bALP	Hydroxylysine	Osteoprotegerin ↓osteoclastogenesis
Osteocalcin	Pyridinoline	Dickkopf-1 ↓ formation
Procollagen type 1 N-terminal Propeptide	Bone Sialoprotein	Sclerostin ↓ formation
Procollagen type 1 C-terminal Propeptide	Osteopontin (OP)	
	Cathepsin K	
	Carboxy-terminal Crosslinked Telopeptide of type 1 collagen (CTX-1) (β Crosslaps)	
	Tartrate-resistant acid Phosphatase 5b (TRAP 5b)	
	Amino-terminal Crosslinked Telopeptide of type 1 collagen	
	РТН	

CKD 3 – 5D

Bone formation	Bone resorption	Turnover regulators
tALP	Deoxypyridinoll e	Receptor activator of NF-кВ ligand (RANKL) ↑ resortpion
bALP	Hydroxylysine	Osteoprotegerin ↓osteoclastogenesis
Osteocalcin	Pyridinoline	Dickkopf-1 ↓ formation
Procollagen type 1 N-terminal Propeptide	Bone Sialoprotein	Sclerostin ↓ formation
Procollagen type 1 C-terminal Propeptide	Osteopontin (OP)	
	Cathepsin K	
	Carboxy-terminal Crosslinked Telopeptide of type 1 collagen (CTX-1) (β Crosslaps)	CKD biochemistry
	Tartrate-resistant acid Phosphatase 5b (TRAP 5b)	DIOCHEITIISTIY
	Amino-terminal Crosslinked Telopeptide of type 1 collagen	
	PTH	

After KT

Bone formation	Bone resorption	Turnover regulators
tALP	Deoxypyridinoline	Receptor activator of NF-кВ ligand (RANKL) ↑ resortpion
bALP	Hydroxylysine	Osteoprotegerin ↓osteoclastogenesis
Osteocalcin	Pyridinoline	Dickkopf-1 ↓ formation
Procollagen type 1 N-terminal Propeptide	Bone Sialoprotein	Sclerostin ↓ formation
Procollagen type 1 C-terminal Propeptide	Osteopontin (OP)	Heimgartner N, et al. Predictive Power of Bone Turnover Biomarkers to Estimate Bone Mineral Density after
	Cathepsin K	Kidney Transplantation with or without Denosumab: A post hoc Analysis of the POSTOP Study. Kidney Blood
	Carboxy-terminal Crosslinked	Press Res. 2020;45(5):758-767.
	Telopeptide of type 1 collagen (CTX-1) (β Crosslaps)	Evenepoel P, et al. Bone mineral density, bone turnover markers, and incident fractures in de novo kidney transplant recipients. Kidney Int. 2019 Jun;95(6):1461- 1470.
	Tartrate-resistant acid Phosphatase 5b (TRAP 5b)	
СКД	Amino-terminal Crosslinked	
biochemistry	Telopeptide of type 1 collagen	
	PTH	

CKD 3T – 5T

Bone formation	Bone resorption	Turnover regulators
tALP	Deoxypyridinoll e	Receptor activator of NF-кВ ligand (RANKL) ↑ resortpion
bALP	Hydroxylysine	Osteoprotegerin ↓osteoclastogenesis
Osteocalcin	Pyridinoline	Dickkopf-1 ↓ formation
Procollagen type 1 N-terminal Propeptide	Bone Sialoprotein	Sclerostin ↓ formation
Procollagen type 1 C-terminal Propeptide	Osteopontin (OP)	
	Cathepsin K	
	Carboxy-terminal Crosslinked Telopeptide of type 1 collagen (CTX-1) (β Crosslaps)	CKD biochemistry
	Tartrate-resistant acid Phosphatase 5b (TRAP 5b)	biochemistry
	Amino-terminal Crosslinked Telopeptide of type 1 collagen	
	PTH	

C. Bone histology

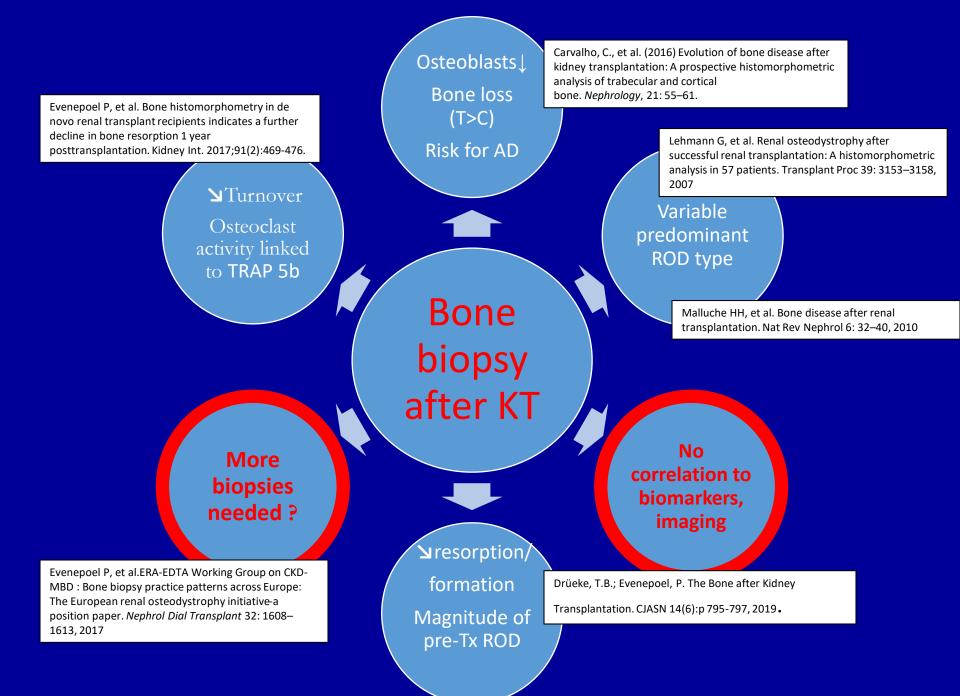
Bone biopsy – importance, indications

• Golden standard, renal osteodystrohpy types, guide for treatment

- In patients with CKD G3a–G5D, it is reasonable to perform a bone biopsy if knowledge of the type of renal osteodystrophy will impact treatment decisions (Not Graded)
- In CKD G3a–G5D + biochemical abnormalities of CKD-MBD and low BMD ± fragility fractures, we suggest that treatment choices take into account the magnitude and reversibility of the biochemical abnormalities and the progression of CKD, with consideration of a bone biopsy (2D)
- KT<12 months, GFR>30 ml/min/1,73m2, low BMD: It is reasonable to consider a bone biopsy to guide treatment (Not graded)
- Inconsistent PTH trend, unexplained calcemia/fractures

Bone histology

- Turnover: skeletal remodelling, bone formation/resorption
- 1. double-tetracycline labeling.
- 2. low normal high
- Mineralization: bone collagen calcification
- 1. Static evaluation osteoid volume/thickness
- 2. Dynamic double tetracycline labelling
- 3. normal abnormal
- Volume: amount of bone / unit volume tisssue
- 1. Measured in cancellous bone
- 2. low normal high


TMV classification

Type of ROD	Т	Μ	V
Osteitis fibrosa	High	Normal	High
Adynamic bone disease	Low	Normal	Low/normal
Mild SHT-bone disease	Medium	Normal	Medium
Osteomalacia	Low	Abnormal	Low/medium
MUO osteopathy	High	Abnormal	normal
Normal histology	Normal	Normal	Normal
+ Signs of osteoporosis thinned trabeculae decreased osteon size enlarged Haversian and marrow spaces		Moe S, Drüeke T, Cunningham J, Goodman W, Martin K, Olgaard K, Ott S, Sprague S, Lameire N, Eknoyan G; Kidney Disease: Improving Global Outcomes (KDIGO). Definition, evaluation, and classification of renal osteodystrophy: a position statement from Kidney Disease: Improving Global Outcomes (KDIGO). Kidney Int. 2006 Jun;69(11):1945-53.	

Bone biopsy: disadvantages

- Expensive
- Invasive
- Pain
- Need for experienced pathologists and laboratory
- Need for experienced operators
- Adequate sampling

Still not routinely used, low number of procedures

Predictors for bone fracture after KT

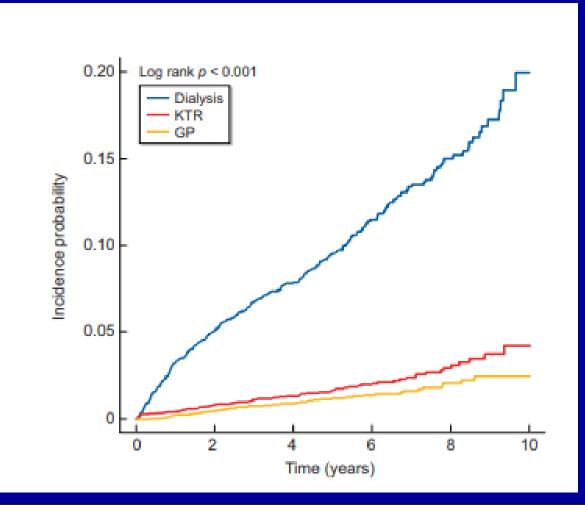
Paramether	Fracture risk
Time after KT: first 6 months	1
Gender: Female	1
Older recipient, deceased donor	1
Pre-transplant dialysis	1
Previous fracture	1
Treatment acute rejection	1
Diabetic nephropathy	1
Preemptive TR	\downarrow
BMD: osteopenia and osteoporosis	1
FRAX score	Needs further evaluation
Bone markers	Need further evaluation
Bone biopsy	Inconsistent results after KT, need for further evaluation: biopsy result – fracture risk

3. Vascular calcification after KT

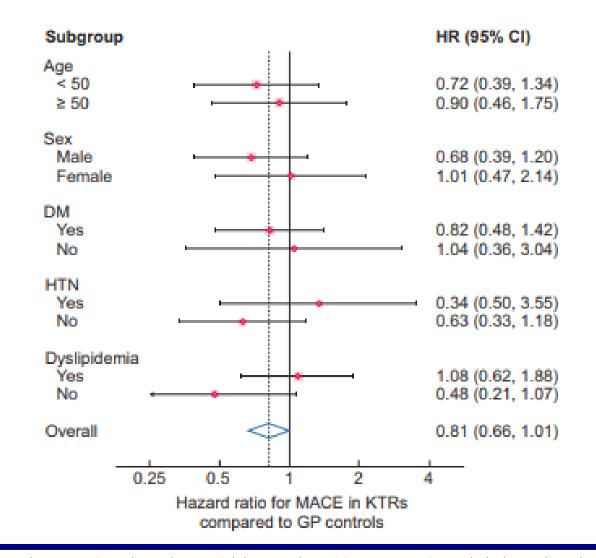
Importance

- Associated with higher CV mortality after KT
- Location arterial + valvular calcification
- Relatively common up to 25%
- Influenced by preceding CKD
- Progression may be slowed down after KT

Risk factors

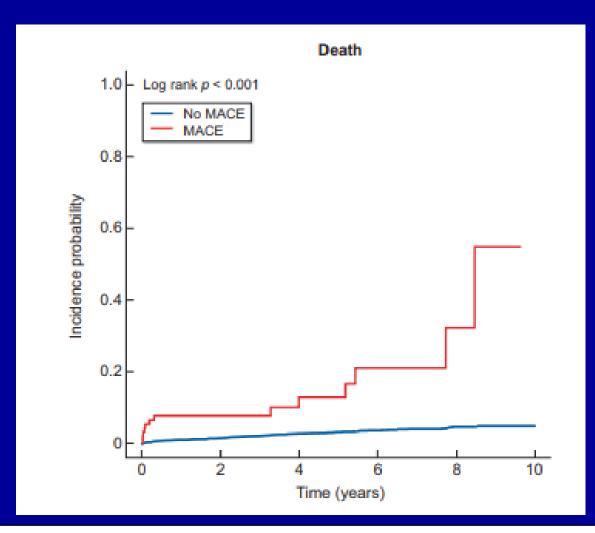

General	Transplant	CKD	Calcification inhibition
Diabetes	Steroids	sHPTH	↓Matrix Gla protein (Vit. K antagonists)
Dyslipidemia	mTOR inhibitors	Systemic inflammation	Hypomagnesemia
Hypertension	CNIs	Oxidative stress	Low Fetulin A
Older age			

Podestà MA, et al. Cardiovascular calcifications in kidney transplant recipients. Nephrol Dial Transplant. 2022;37(11):2063-2071.

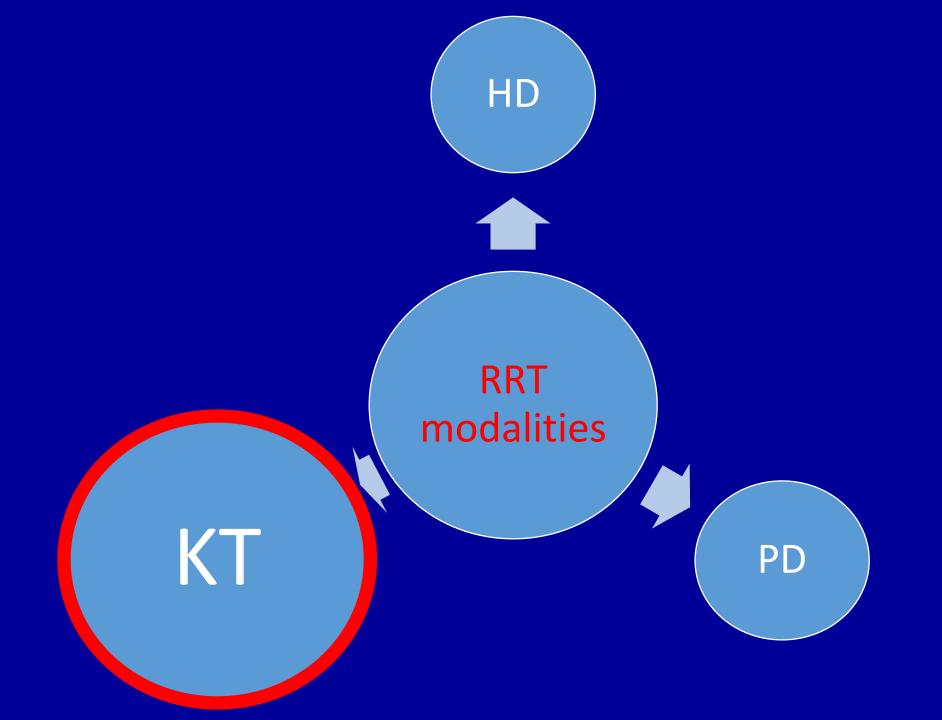

Diagnosis

- CT scan
- Lateral X ray: abdominal, pelvic
- Echocardiography
- DXA scan

CV incidence and mortality after KT



Kim JE, et al. De novo major cardiovascular events in kidney transplant recipients: a comparative matched cohort study. Nephrol Dial Transplant. 2023;38(2):499-506.


Kim JE, et al. De novo major cardiovascular events in kidney transplant recipients: a comparative matched cohort study. Nephrol Dial Transplant. 2023;38(2):499-506.

MACE and mortality after KT

Kim JE, et al. De novo major cardiovascular events in kidney transplant recipients: a comparative matched cohort study. Nephrol Dial Transplant. 2023;38(2):499-506.

Post-KT mineral bone disease: treatment

Post-KT mineral bone disease: treatment and prevention

Biochemistry	Bone	CV involvement
Treatment sHPTH	Steroid minimization	BP control
Ca/P correction	Vitamin D/vitamin D analogue	Dyslipidemia
VD supplementation	Cinecalcet	Treatment sHPTH
Parathyroidectomy	Antiresoptive therapy	Diabetes control
	Recombinant PTH (teriparatide)	Immunosuppression optimization
	Lifestyle modifications	Lifestyle modification

Antiresorptive therapy after KT

- Bisphosphonates + Denozumab
- Lower bone turnover
- Can theoretically worsen pre-existing ABD
- Results inconsistent
- Bone biopsy can be considered, but not obligatory
- Can be used in patients with high fracture risk

Bisphosphonates and risk of ABD

Author	Bisphosphonate	BMD	Biopsy
Coco et al	Pamidronate vs Calcitriol+Ca	Slower decline of vertebral BMD in pamidronate	Increased risk of ABD
Haas et al	Zoledronate + Ca vs Ca	Improvement of lumbar BMD vs controls	No risk of ABD
Coco et al	Risedronate+Calitriol vs Calcitriol	No change in lumbar BMD	↑osteoid formation, No risk of ABD
Marques et al	Zoledronate vs controls	Improvement in BMD in both groups	Reduced trabecular bone loss in zoledronate No risk of ABD

Coco M, et al. Prevention of bone loss in renal transplant recipients: A prospective, randomized trial of intravenous pamidronate. J Am Soc Nephrol 14: 2669–2676, 2003

Haas M, et al. Zoledronic acid to prevent bone loss in the first 6 months after renal transplantation. Kidney Int 63: 1130–1136, 2003

Coco M, et al. Effect of risedronate on bone in renal transplant recipients. J Am Soc Nephrol 23: 1426–1437, 2012

Marques IDB, et al. A randomized trial of zoledronic acid to prevent bone loss in the first year after kidney transplantation. J Am Soc Nephrol 30: 355–365, 2019

Denosumab after kidney transplantation

- Humanized monoclonal antibody
- Inhibits the receptor activator of the Nf-kB ligand
- Risk for hypocalcemia, urinary tract infections
- No immunological risk
- Limited trials after KT

Denosumab after kidney transplantation

Author	Design	BMD	Bone biopsy
Alfieri et al.	Denosumab, no control arm	Increased BMD femur and spine	n.a.
Bonani et al.	Denosumab vs controls	Increased femoral and lumber BMD	n.a.
McKee et al.	Denosumab vs bisphosphonates retrospective	Better BMD increase on Denosumab	n.a.
Afifi et al	Denosumab vs Ibandronate	Better BMD on Denosumab	n.a.
Sayed et al.	Denosumab vs Alendronate vs controls	Improvement in BMD on therapy, Denosumab ≈ Alendronate	n.a.

Alfieri C, et al. Bone Effect and Safety of One-Year Denosumab Therapy in a Cohort of Renal Transplanted Patients: An Observational Monocentric Study. J Clin Med. 2021;10(9):1989.

Bonani M, et al. Effect of twice-yearly denosumab on prevention of bone mineral density loss in de novo kidney transplant recipients: a randomized controlled trial. Am J Transplant. (2016) 16:1882–91.

McKee H, et al. Correction to: Comparison of the clinical effectiveness and safety between the use of denosumab vs bisphosphonates in renal transplant patients. Osteoporos Int. 2020;31(5):981.

Afifi, M.K., et al. Optimization of osteoporosis and osteopenia management among renal transplant recipients. Futur J Pharm Sci 7, 230 (2021).

Sayed, SA, et al. Evaluation of the efficacy and tolerability of alendronate versus denosumab in kidney transplant patients with reduced bone mineral density. Pharmacotherapy. 2023; 43: 904-912.

Mineral Bone Disease after Kidney Transplantation: conclusions

- High prevalence
- Numerous risk factors
- Higher mortality
- Poorer quality of life
- Serum biomarkers not very informative
- More bone biopsies needed?
- Modifiable factors present
- More data on treatment expected

Thank you for your attention !

