

HELLENIC SOCIETY OF NEPHROLOGY MEETING & SEMINAR

COMBINED WITH 18th BANTAO CONGRESS 19-22/10/23, GREECE

Challenges in diagnosis and management

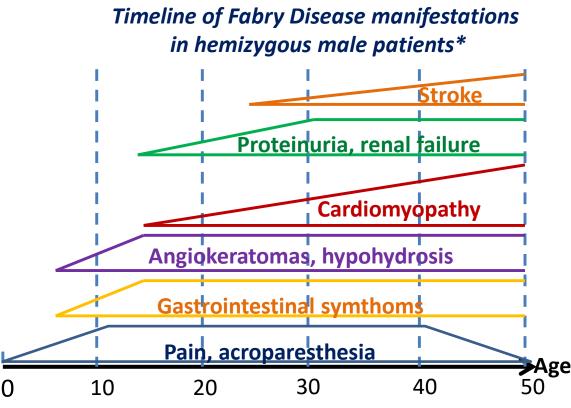
of Fabry nephropathy

Elena RUSU

Nephrology Clinic, University of Medicine and Pharmacy "Carol Davila", Bucharest, Romania Expert Center for Rare Diseases of Reno-Urinary System, "Fundeni" Clinical Institute, Bucharest

Dr Elena RUSU Disclosures


- Speaker's honoraria from Sanofi-Genzyme, Genesis Pharma (Cyprus) Ltd, Genesis Biopharma Romania, Takeda, AstraZeneca Pharma SRL
- Advisory board for Genesis Pharma (Cyprus) Ltd, Genesis Biopharma Romania, Fresenius Kabi Deutschland, Sanofi-Genzyme, Takeda, Alnylam Pharmaceutical.



Fabry disease is a multisystemic disorder

Fabry disease (FD) is an X-linked lysosomal storage disorder, caused by the deficiency of α -galactosidase A (α -Gal A), which leads to a progressive accumulation of the globotriaosylceramide (GL-3) and its derivatives, e.g., globotriaosylsphingosine (lyso-GL-3) in various tissues.

Malte Lenders and Eva Brands. Nephrol Dial Transplant 2021; 36: ii14-ii23

*Adapted from Metha et al. Eur J Clin Invest 2004

Kidney involvement in Fabry disease

Microalbuminuria and proteinuria 1,2

Chronic kidney disease³

Decreased GFR and progressive kidney failure^{1,3}

Podocyte foot process effacement¹

Substrate accumulation in glomerular endothelial, mesangial, tubular and interstitial cells¹

Glomerular sclerosis, tubular atrophy, and interstitial tissue damage (leading to kidney failure)³

Kidney biopsy demonstrating renal damage^{1,2}

1. Germain DP. Orphanet J Rare Dis. 2010;5:30. 2. Mehta A, et al. QJM. 2010;103(9):641-659. 3. Eng CM, et al. Genet Med. 2006;8(9):539-548.

Challenges in diagnosis and management of Fabry disease

- Reduce the time to diagnosis
- Biomarkers of kidney involvement
- Tools to determine when to start the treatment
- Understanding the correlations between genotype and phenotype
- To establish the predictors of clinical response
- Improve treatment

Epidemiology of Fabry disease

The prevalence of FD has been estimated between 1:40.000 and 1:170.000 individuals.

Biegstraaten M, et al. Orphanet J Rare Dis 2015;10:36.

Newborn screenings

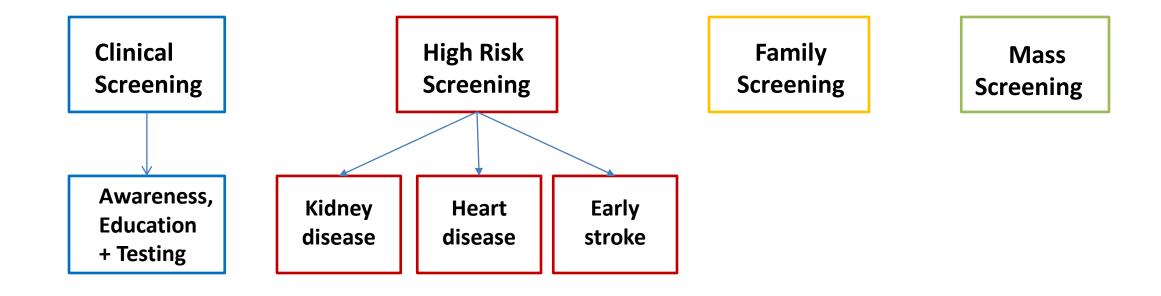
A recent newborn screening study from Italy revealed the overall incidence of 1:7879 newborns (1 in 4068 males), and pathogenic variants incidence 1:13.334 (1 in 6883 males).

Newborn Screening for Fabry Disease in Northeastern Italy: Results of Five Years of Experience

<u>Vincenza Gragnaniello</u>,^{1,†} <u>Alessandro P Burlina</u>,^{2,†} <u>Giulia Polo</u>,¹ <u>Antonella Giuliani</u>,¹ <u>Leonardo Salviati</u>,³ <u>Giovanni Duro</u>,⁴ <u>Chiara Cazzorla</u>,¹ <u>Laura Rubert</u>,¹ <u>Evelina Maines</u>,⁵ <u>Dominique P Germain</u>,⁶ and <u>Alberto B Burlina</u>^{1,*}

- 173,342 newborns (89,485 males) in 5.5 years
- α-galactosidase A activity and lyso-Gb₃ assays in DBS

Biomolecules. 2021 Jul; 11(7): 951

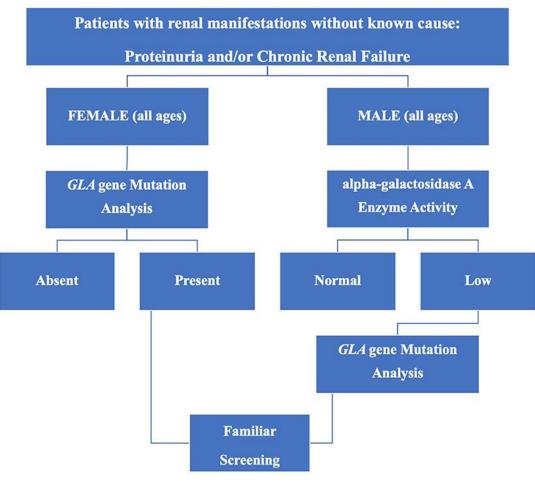

Prevalence of Fabry disease-causing variants in the UK Biobank

Mark Gilchrist ⁽ⁱ⁾, ¹ Francesco Casanova, ² Jess S Tyrrell ⁽ⁱ⁾, ² Stuart Cannon ⁽ⁱ⁾, ¹ Andrew R Wood, ³ Nicole Fife, ¹ Katherine Young ⁽ⁱ⁾, ¹ Richard A Oram, ⁴ Michael N Weedon⁴ J Med Genet 2023;60:391–396. The overall prevalence of Fabry disease causing variants in the UK Biobank is 1 in 5573 with the majority being those associated with a late-onset phenotype.

Types of screening for Fabry disease

Investigation of renal signs and symptoms could be key to prompt diagnosis and appropriate interventions for Fabry disease

Red flags for Fabry nephropathy:¹


- Unexplained CKD, especially if presents proteinuria, without hypertension or mild hypertension in males < 50 year-old, and female, any age
- Family history of nephropathy
- Characteristic findings on kidney biopsy (zebra bodies)

<u>Non-renal red flags:</u>

- Unexplained left ventricular hypertrophy
- Stroke in young patient, neuropathic pain, impaired sweating
- Angiokeratomas

Linthorst GE. Et al. J Med Genet, 2010
 Battaglia Y. et al. Front. Med., 2021

Flow-chart for screening for FD in CKD patients²

Screening for Fabry disease

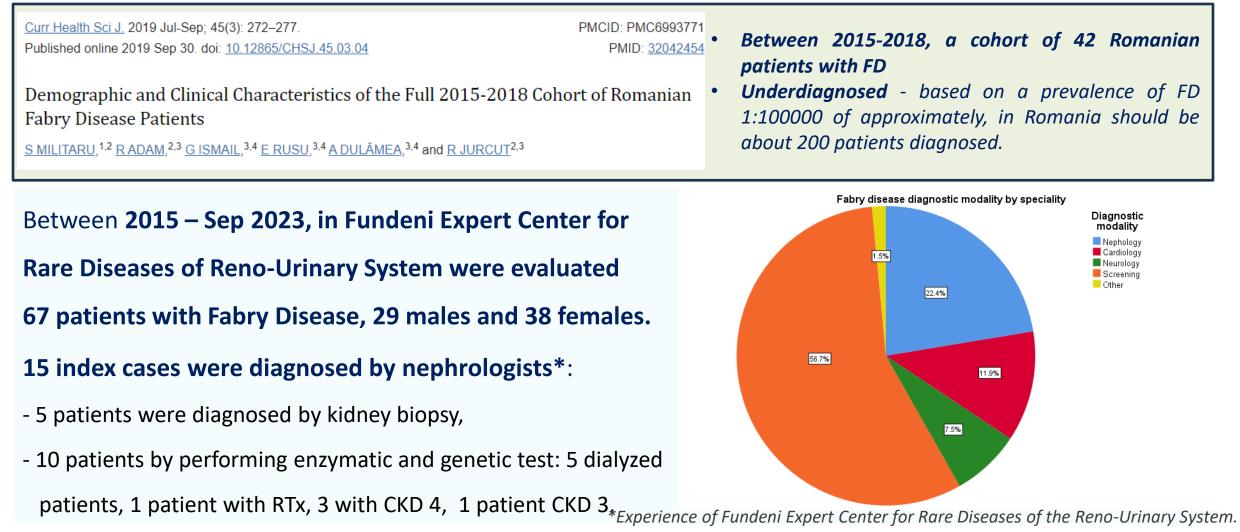
High risk groups screening

Doheny et al reported prevalence of GLA variants in renal, cardiac and stroke clinics 1995-2017. Analysis included 63 studies and 51363 patients.

	Male	Female
Hemodialysis	0.21%	0.15%
Renal transplant	0.25%	0%
Cardiac	0.94%	0.9%
Stroke	0.13%	0.14%

Family screening

For an index case with FD approximately five family members are identified.


The efficacy of screening programs depends on careful selection of an appropriate patient with multi-organ morbidity and a positive family history.

Doheny et al. J Med Genet, 2018; Battaglia Y et al. Front Med, 2021, Vardarly Y et al. Ther Clin Risk Manag. 2020, Laney et al. J Genet Couns, 2013

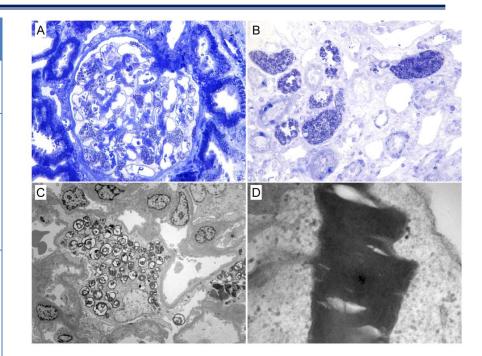
Fundeni Expert Center for Rare **Diseases of Reno-Urinary System**

Microalbuminuria is an early marker of Fabry nephropathy and a criterion for the diagnosis of CKD. Albuminuria should be expressed as a ratio to urinary creatinine or per 24 h.¹ Albuminuria and eGFR slopes are current gold-standard biomarkers for monitoring FD-related nephropathy.

Loss of podocytes is an early marker of Fabry disease, likely preceding proteinuria and GFR decline, and is central to progression of Fabry nephropathy.^{2,3} Podocyturia could potentially support the diagnosis of FD and guide treatment strategies.⁴ The existing methods to assess podocyturia are not suitable for wide application in clinical settings.⁵

Use of cystatin-C provide a muscle-mass-independent criterion for early stage FD nephropathy and guide timely initiation of disease specific treatment.⁴

- 1. D.P. Germain, G. Altarescu, et al. Mol Genet Metab 2022; 137: 49–614.
- 2. Trimarchi H, et al. J Nephrol. 2016;29(6):791-797.
- 3. Najafian B, et al. Kidney Int. 2011;79(6):663-670.
- 4. Burlina A, et al. Mol Genet Metab 2023; 139, 107585
- 5. B. Vujkovac et al. Clinical Kidney Journal, 2022

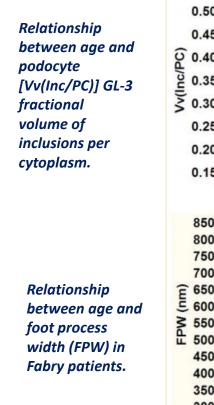

Kidney biopsy – diagnostic biomarker for Fabry nephropathy

Indications for kidney biopsy (KB) in FD nephropathy^{1,2}

- To assess the degree of glomerulosclerosis and interstitial damage
- In patients with 30- to 300-mg/g albumin-to-creatinine ratio and normal kidney function, the biopsy can determine whether there are GL-3 deposits and quantify them.
- In women without evidence of FD nephropathy, the presence of significant renal deposits may serve as an indicator for the start of specific therapy.
- Exclusion of coexistent kidney disease
- Assessment of response to current therapy when a switch of therapy is

being considered

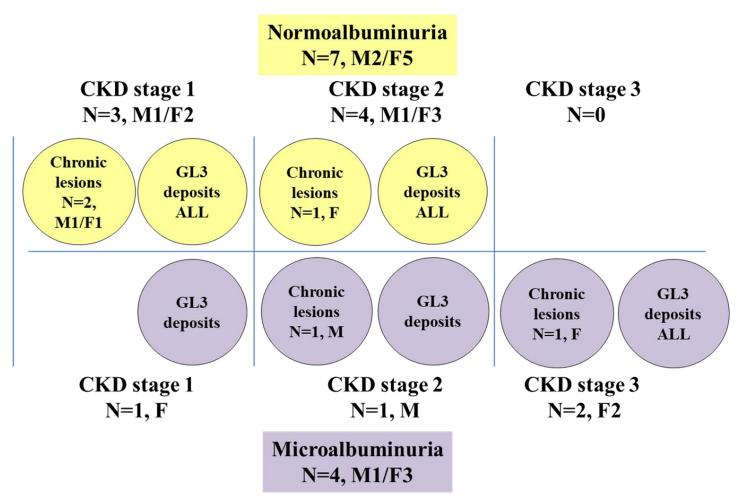
Kidney biopsy findings A: Light microscopy image of a semi-thin plastic section showing a glomerulus with many lamellar inclusion bodies in podocytes (toluidine blue stain, 200x); B: Light microscopy image of a semi-thin plastic section showing renal medulla with tubular epithelial cells and vascular smooth muscle cells having their cytoplasm filled with inclusion bodies (toluidine blue stain, 200x); C: Electron microscopy image showing electron dense, lamellate inclusions (typical "zebra bodies") in the cytoplasm of podocytes (5700x). D: Electron microscopy image showing the densely packed lamellate membranes contained into a lysosome (24000x). **Rusu, E.E. et al. Biomedicines 2022, 10,1520**. <u>https://doi.org/10.3390/</u> biomedicines10071520


1. Germain DP, Altarescu G. et al. Mol. Genet. Metab 2022; 137: 49-61 2. Silva C.A.B. et al. , Can. J. Kidney Health Dis., 8 (2021)



Renal histologic changes begin before microalbuminuria is present

- Renal biopsies from 14 (M/F=8/6) therapy naive Fabry patients (median age 12 years, range 4-19)
- Direct relationship between volume fraction of GL-3 per podocyte and foot process width (FPW), an indicator of podocyte injury
- Increase in foot process width (FPW), in normoalbuminuric young Fabry patients in the present study suggests that albuminuria/proteinuria is not sensitive enough to detect early kidney injury in Fabry nephropathy


Najafian B. et al. Kidney Int. 2011; 79(6): 663-670.

Renal histologic changes begin before microalbuminuria is present*

Rusu E et al. poster, The 3rd International Conference on Lysosomal Diseases, London 2023

- **11 patients who had normoalbuminuria or microalbuminuria (**without FD specific therapy) were evaluated by KB.
- FD specific histological findings and nonspecific chronic lesions were observed even in normoalbuminuric patients, demonstrating that albuminuria is not sufficiently sensitive biomarker to diagnose early kidney involvement in Fabry disease.
- These results indicate that evaluation by KB of FD patients can help to identify the early kidney injury, to establish the risk of progression, and can potentially be used to guide clinical decisions for FD specific therapy initiation.

*Experience of Fundeni Expert Center for Rare Diseases of the Reno-Urinary System.

The PRoposing Early Disease Indicators for Clinical Tracking in Fabry Disease (PREDICT-FD)¹-Renal indicators for disease progression

In the international PREDICT-FD expert consensus, the early indicators of clinical kidney damage included microalbuminuria, glomerular hyperfiltration and podocyte GL3 inclusions in the presence of other renal lesions, such as signs of glomerulosclerosis or vasculopathy, which may occur even in patients without microalbuminuria.

Early	Established ^a	Late
Histology		
Podocyte inclusions b		
Other renal lesions		→
GFR > 130 ml/min/1.73m ²	< 90 ml/min/1.73m ²	< 60 ml/min/1.73m ²
Elevated serum cvstatin C*		
Albuminuria ACR < 150 mg/g	ACR 150 - 300 mg/g	ACR > 300 mg/g
Microalbuminuria ^c	Microalbuminuria	Albuminuria

a = indicators that currently would be likely to trigger FD-specific treatment initiation.; b = in isolation, probably insufficient justification for FD-specific therapy initiation.

* indicator tested for, but not achieving consensus in round 3.

c = Microalbuminuria could be a trigger for further investigations, such as confirmatory biopsy, and subsequent initiation of disease-specific treatment.

ACR = Albumin : creatinine ratio

1 Hughes DA et al. BMJ Open 2020; 10:e035182

	Manifestations	Enzyme activity (in males)	Plasma lyso-GL
Classic Fabry disease	Early-onset and characteristic	Absent or deficient	High
Later-onset Fabry disease	Attenuated and non-specific	Residual	Moderately high

The European Fabry working group consensus document recommendations for enzyme replacement therapy ¹						
Classical FD males : 16 years or older, even if they have no symptoms or clinical signs of organ involvement	Class IIB recommendation					
Classical FD males and females : as soon as there are early signs of FD organ involvement (kidney, heart, and/or CNS signs) and not fully explained by other pathology	Class I recommendation					
Non-classical FD males : as soon as there are early signs of FD organ involvement (kidney, heart, and/or CNS signs and not fully explained by other pathology	Class I recommendation					
Non-classical FD females: early clinical signs consistent with FD	Class IIB recommendation					

Initiation of Fabry specific therapy in females: How early is early enough?

- Treatment recommendations suggest that females should start therapy only if incipient Fabry disease typical organ damage becomes apparent ⁽¹⁾
- Early treatment in females with a classical phenotype might be more effective before significant end-organ damage occurs ^(2,3)
- In an asymptomatic woman with a classic Fabry mutation, initiation of FD-specific treatment should be considered if there is laboratory, histologic, or imaging evidence of renal, cardiac, or central nervous system damage ⁽²⁾

Rusu E et al. Nephrol Dialysis Transplant, 37, Suppl. 3, 2022 <u>https://doi.org/10.1093/ndt/gfac062.009</u>

No	Age at KB	ERT duration (years)	eGFR (ml/min /1.73m)	Urine ACR (mg/g)	Proteinuria (g/24h)	Global sclerosis	Segmental sclerosis	Interstitial fibrosis	Arterial sclerosis	Podocyte GL3 deposits	Tubular GL3 deposits	Endothelial GL3 deposits	
1	55	naive	61	819	1.8	+	+	+	+	+	+	+	
2	61* 🤇	naive	85.3	20	0	-	-	+	+	+	+	+	
3	35	naive	40	900	4.5	+	+	-	-	+	+	+	
4	57* (2	88	150	0.2	-	+	+	-	+	+	+	
5	49* (naive	104	100	0.2	-	-	+	-	+	+	+	
6	50	naive	56	100	0.4	+	+	+	+	+	+	+	
7	30* 🤇	naive	88	10	0.2	-	-	-	-	+	+	+	
8	46* 🔇	naive	96	10	0.1	-	-	-	-	+	+	+	
9	35* 🔇	naive	81	20	0.3	-	-	-	-	+	+	+	
10	62	naive	53	10	0.1	-	-	-	+	+	+	-	
11	63	naive	59	30	0.2	-	-	-	-	+	+	-	

*Without renal criteria for initiation of enzyme replacement therapy, according to Romanian national protocol

Kidney biopsy in females with Fabry Disease is an important tool to establish the indication to start Fabry therapy

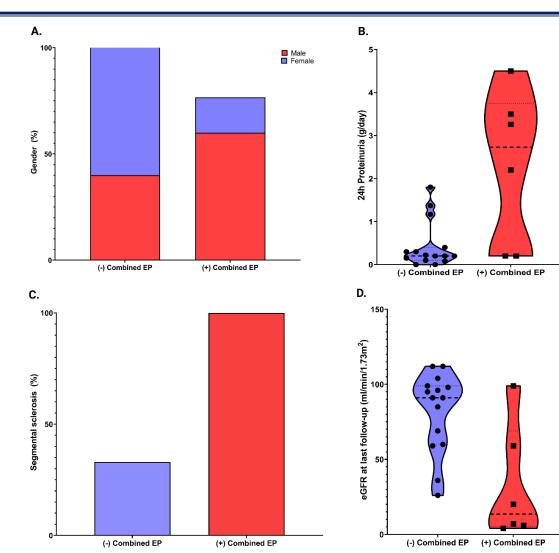
Rusu E et al. Nephrol Dialysis Transplant, 37, Suppl. 3, 2022 <u>https://doi.org/10.1093/ndt/gfac062.009</u>

- Considering Romanian national criteria for initiation of enzyme replacement therapy (eGFR < 80 ml/min/1.73m² and/or proteinuria > 300 mg/day), 6 patients with KB evaluation did not fulfill the renal criteria, but kidney biopsy showed FD specific lesions in all cases
 - > 3 out of 6 patients presented criteria due to other organs involvement,
 - while 3 patients (mean age 37.7 years) did not fulfill any criteria for treatment initiation.
 These 3 patients were monitored at 6 months and 2 patients started FD-specific treatment after about 2 years.

Our experience suggest that a revision of the Romanian national protocol is necessary, by adoption of early indicators of kidney involvement in order to promote earlier specific treatment in FD females.

Single center, cohort study evaluated the impact of Fabry nephropathy diagnosed by kidney biopsy on the management of patients and long-term outcomes

Rusu, E.E. et al. Biomedicines 2022, 10,1520. <u>https://doi.org/10.3390/</u> biomedicines10071520

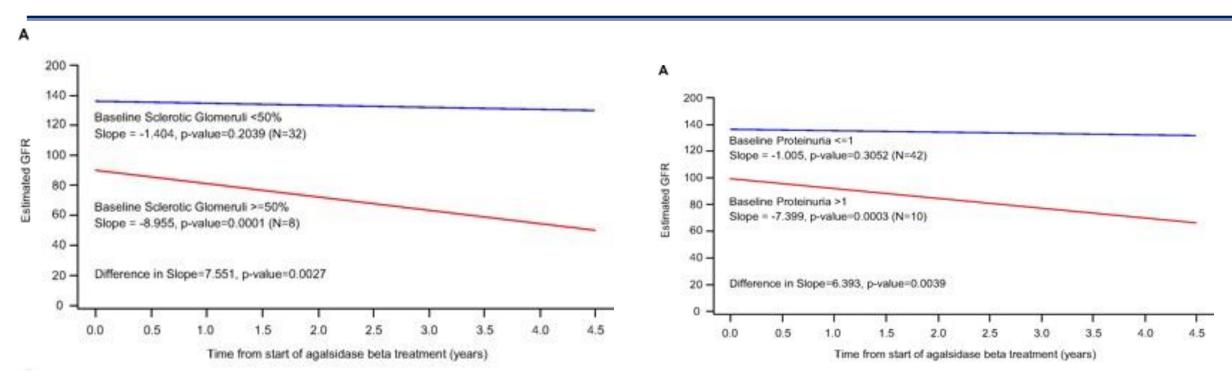

Patient No.	Sex/ Age (yr)	ERT duration (mo)	eGFR (ml/min/ 1.73 m²)	UACR (mg/g)	Proteinur ia (g/24h)	Global sclerosis	tal	Glomerular Hyaline				Podocyte GL3 deposits	Tubular GL3 deposits	Glomerular endothelial cell GL3 deposits
1	M/17	0	44.7	500	3.26	+	+	-	+	NA	+	+	+	+
2	M/10	0	87.5	10	0.08	-	-	-	-	-	-	+	+	+
3	M/41	0	45	100	1.37	-	-	-	+	NA	+	+	+	+
4	M/26	0	89	345	0.3	-	-	-	-	-	-	+	+	+
5	M/44	0	29	600	3.5	-	+	+	+	+	+	+	+	+
6	M/39	0	67	80	0.15	+	+	+	+	+	-	+	+	+
7	M/29	0	120	10	0.2	-	+	-	-	-	-	+	+	+
8	F/50	0	56	100	0.4	+	+	-	+	+	+	+	+	+
9	F/55	0	61	819	1.8	+	+	+	+	+	+	+	+	+
10	F/49	0	104.2	100	0.2	-	-	-	-	+	-	+	+	+
11	F/46	0	96	10	0.1	-	-	-	-	-	-	+	+	+
12	F/30	0	88	10	0.2	-	-	-	-	-	-	+	+	+
13	F/35	0	81	20	0.3	-	-	-	-	-	-	+	+	+
14	F/63	0	59	30	0.22	-	-	-	-	NA	-	+	+	-
15	F/35	0	40	900	4.5	+	+	-	-	-	+	+	+	+
16	F/61	0	85.3	20	ND	-	-	-	+	NA	+	+	+	+
17*	M/43	12	111	300	1.17	-	+	-	+	+	+	+	+	+
18*	M/32	144	120	20	ND	-	-	-	-	-	-	+	+	+
19*	M/58	72	102	10	0.2	-	+	-	+	+	-	+	+	+
20*	M/37	120	98	500	2.2	+	+	-	+	+	-	+	+	+
21*	F/57	27	88	150	0.2	-	+	+	-	-	-	+	+	+

*Previously enzyme replacement therapy treated patients; Plus (+) sign represent the presence and minus (-) sign represent the absence; M - male, F - female; NA - not applicable; GL3 - globotrioasylceramide

Rusu, E.E. et al. Biomedicines 2022, 10,1520. <u>https://doi.org/10.3390/</u> biomedicines10071520

The mean follow-up period was 47.7 ± 19.1 months and a mandatory condition for monitoring for at least 12 months.

Variables associated with combined endpoint (50% decrease of eGFR from baseline, reaching end-stage kidney disease and mortality):

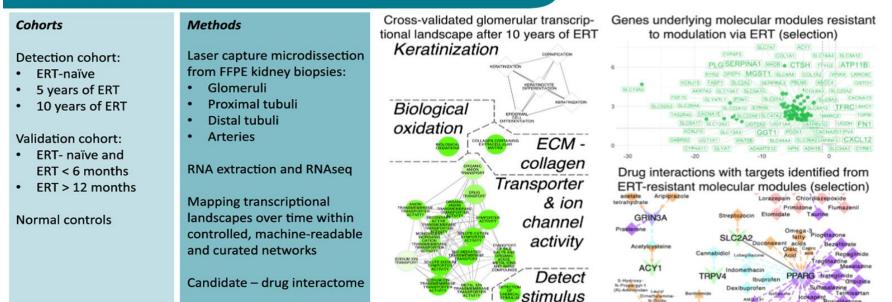

- A. Gender (p=0.06)
- B. Baseline 24h proteinuria (p = 0.02)
- C. Segmental sclerosis (p = 0.009)

D. eGFR at last follow-up (p=0.003).

Changes in eGFR and proteinuria in individual patients under Agalsidase beta

Subgroup analyses of patients in the "as treated" population show that those with **pre-treatment** glomerulosclerosis (≥50% sclerotic glomeruli) and high (>1 g/24 h) baseline proteinuria is associated with higher rate of eGFR decline and increased probability of renal events.

Germain, D.P. et al. Sustained, Long-Term Renal Stabilization After 54 Months of Agalsidase Beta Therapy in Patients with Fabry Disease. J Am Soc Nephrol 2007; 18(5):1547-1557.


Systems analyses of the Fabry kidney transcriptome and its response to enzyme replacement therapy identified and cross-validated enzyme replacement therapy-resistant targets amenable to drug repurposing

Delaleu N, Marti HP, Strauss P, Sekulic M, Osman T, Tøndel C, Skrunes R, Leh S, Svarstad E, Nowak A, Gaspert A, **Rusu E**, Kwee I, Rinaldi A, Flatberg A, Eikrem O **Kidney International**, Volume 104 Issue 4 Pages 803-819 (October **2023**)

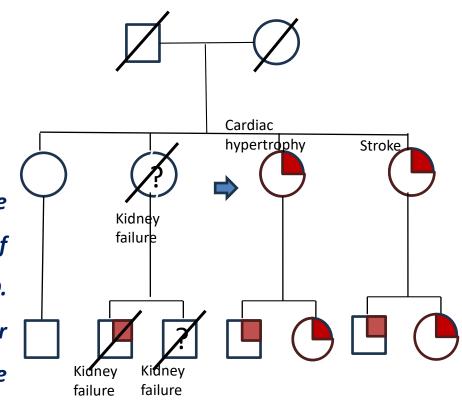
Systems analyses of the Fabry kidney transcriptome and its response to enzyme replacement therapy identified and cross-validated enzyme replacement therapy-resistant targets amenable to drug repurposing

Delaleu et al. 2023

CONCLUSION

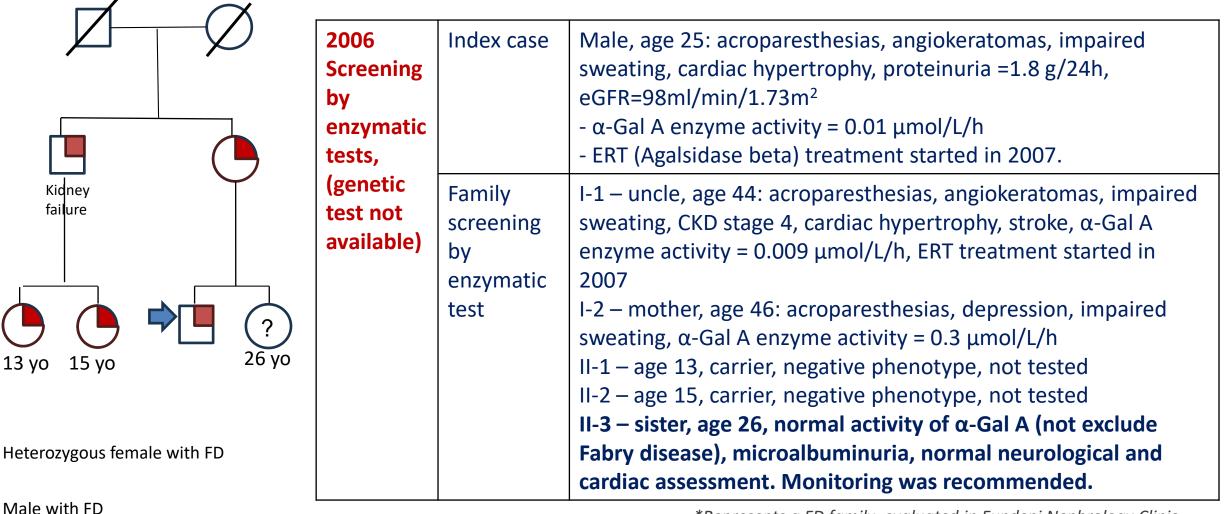
Investigation of ERT's long-term impact on Fabry nephropathy via transcriptomics of serial biopsies provides an analytical framework identifying features resistant to ERT that may potentially represent novel drug-targets.

Transcriptome has potential to be an adjuvant tool for elucidating the variability of phenotypes in the same family


Molecular Genetics and Metabolism Volume 138, Issue 2, February 2023, 106998

Whole blood transcriptomic profiling in the interpretation of variable phenotype presentation in Fabry disease

<u>Gheona Altarescu</u>^a, <u>Omer Murik</u>^a, <u>Ruxandra Jurcut</u>^b, <u>Elena E. Rusu</u>^c, <u>Adriana Mursa</u>^d, <u>Tzvia Mann</u>^a, <u>Yifat Eldar-Yedidia</u>^e, <u>David A. Zeevi</u>^a

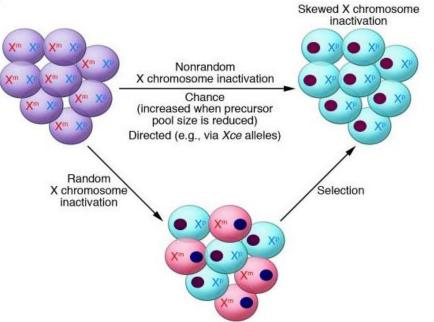

"Conclusion: We show here that the expression profiles of FD patients are distinguished from healthy controls for a subset of over 100 genes, some of which are associated with the biological and clinical manifestations of FD. We propose to use transcriptomic profiling in order to gain a better understanding of the biological consequences of FD and in order to improve the interpretation of variable phenotypes in Fabry disease patients bearing the same GLA gene genotype.

Pedigree of the first family evaluated in "Fundeni" Center

*Represents a FD family evaluated in Fundeni Nephrology Clinic

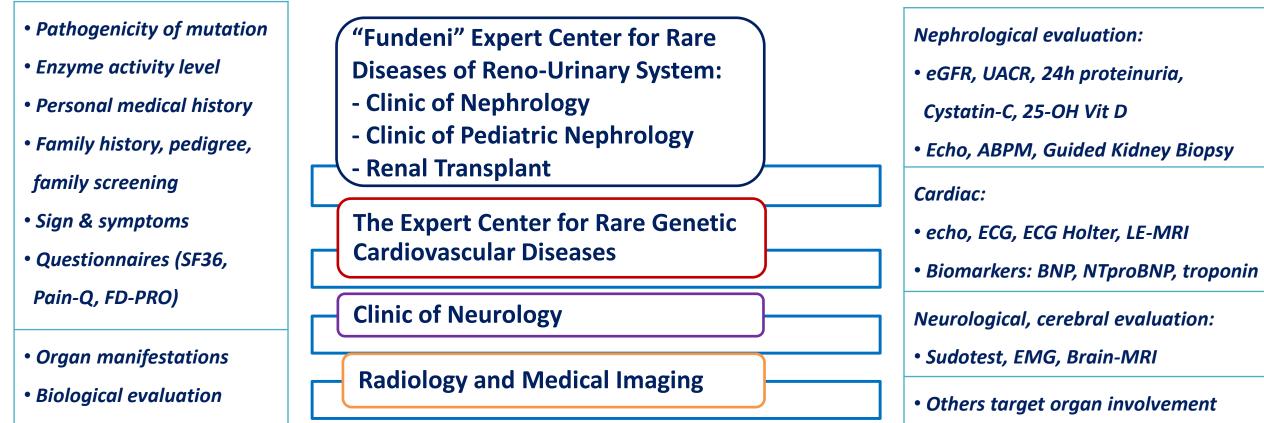
Center

Case report – 35 yo female with Fabry disease*


Ø	2006-2015	 lost nephrology follow-up 2014 - hypertension 	
	2015, 35 уо	• genetic test: pathogenic mutation c.486 G>A	C SZ S Real 4
	Clinical assessmen	it (2015)	
Hemodialysis, stroke	Kidney	 hypertension, CKD stage G3bA3 (eGFR=40 ml/min/1.73 m², proteinuria 4.5 g/day) Kidney biopsy: 30% global glomerular sclerosis, numerous GL-3 deposits in podocytes, tubes, and arterioles. Another etiology for CKD was excluded. 	
	Cardiac	- normal ECG and echocardiography, without arrythmia	
уо	Cerebrovascular	- Normal MRI	
	Dermatological	 upper limbs fingers angiokeratoma 	
	Ophthalmological	- Cornea verticillata	
Heterozygous female with FD	2015	Started ERT	Magnification Acquestion Date Accelerating Voltage Channel B.F. 10000 x 26/06/15, 13:56 80 KV CD10-77
Male with FD	2022	• ESKD, Jan 2022 started hemodialysis, Sep 2022 RTx. ERT therapy was continued.	*Represents a FD patient evaluated in Fundeni Nephrology Expert Center

X Chromosome Inactivation

- X chromosomes inactivation (XCI) involves a random choice to silence either maternal or paternal X chromosome early in mammalian female development.
- Therefore, females are generally mosaics, having a mixture of cells with one or the other paternal X active. The most females the number of cells with either X being active is roughly equal. However,
 skewing of X chromosome inactivation is observed in a percentage of women.
- Thus, women can vary from asymptomatic, mildly symptomatic, to severely symptomatic but with a later onset of symptoms.



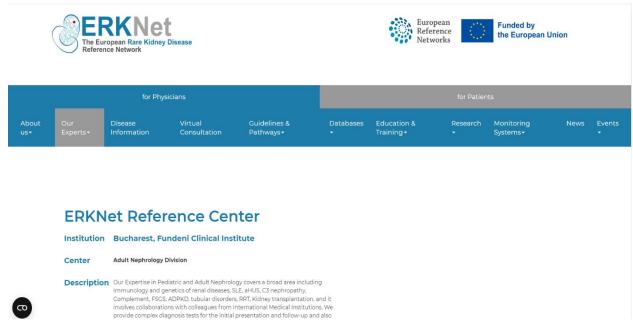
Minks J et al. J Clin Invest. 2008 Jan 2; 118(1): 20–23. Maier EM et. Acta Paediatr Suppl. 2006;95(451):30-8. Echevarria L et al. Clin Genet. 2016;89(1):44-54.

Multidisciplinary approach

• Biomarkers: Lyso-GL3

National protocol for Fabry disease treatment and Fundeni Nephrology Clinic Protocol

"Fundeni" Expert Center for Rare Diseases of Reno-Urinary System

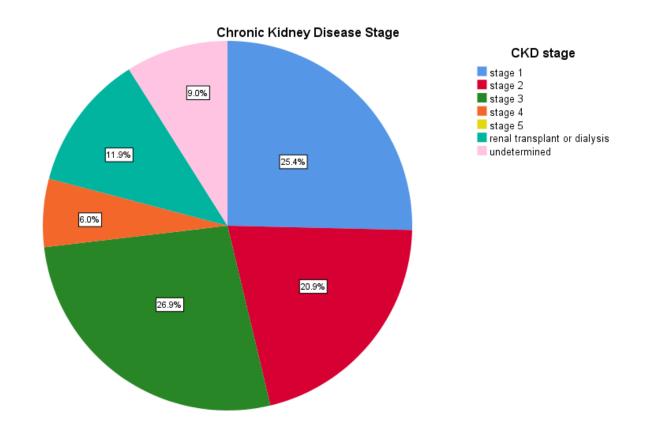


2006 – Romanian Association for the Study of Hereditary Kidney Diseases

2016 – Expert Center for Rare Diseases of Reno-Urinary System

2021 – full member of the European Rare Kidney Disease Reference Network (ERKNet)

www.nephroered.ro, www.erknet.org



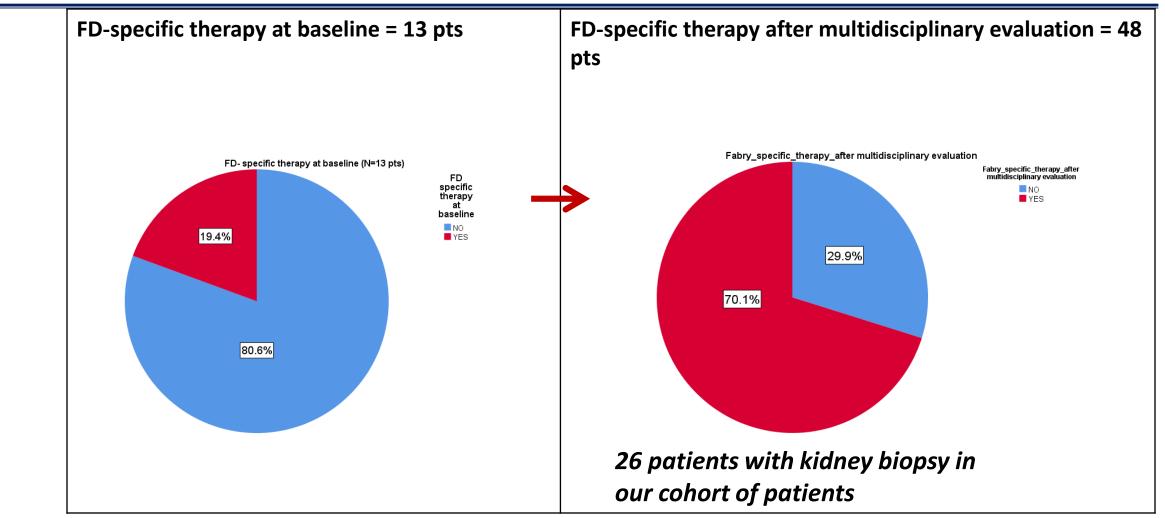
Between 2015 – Sep 2023, in our center were evaluated 67 patients with Fabry Disease:

- 29 males and 38 females
- Mean age: 40.6 ± 16.3 (3-75) years
- No of adult: 62
- No of children: 5
- No of families: 27

Baseline characteristics of Fabry adult patients

		Male (n= 27)	Female (n=35)
General features	Mean age at baseline, years	39	46
and	Mean age of diagnosis	35	44
cardiovascular risk factors*	Mean age at symptoms	20	33
-	Hypertension	11	13
	Dyslipidemia	10	13
	Diabetes	0	2
	Smoking	11	15

*The cohort of patients evaluated in Fundeni Expert Center for Rare Diseases of the Reno-Urinary System.



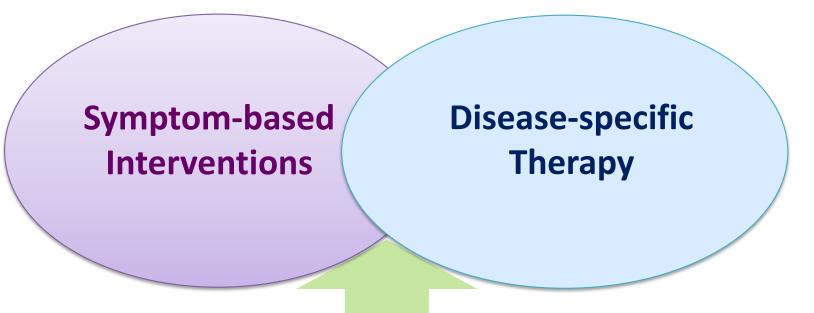
Kidney symptoms		Male* (n= 24)	Female* (n=31)
CKD stage at	Subclinic/no CKD	0	3
baseline	G1	7	10
	G2	3	9
	G3a	5	9
	G3b	2	2
	G4	3	1
	G5/Dialysis	2	1
	Kidney transplant	5	0
	Without albuminuria	4	14
Proteinuria level	Microalbuminuria	8	9
	Proteinuria	12	8
Kidney biopsy	26 adult patients	11	15

*Patients evaluated in Fundeni Expert Center for Rare Diseases of the Reno-Urinary System.

*The cohort of patients evaluated in Fundeni Expert Center for Rare Diseases of the Reno-Urinary System.

		Male (n=27)	Female (n=35)
Fabry features in adult	Hypertrophic cardiomyopathy, n (%)	22 (81.5)	13 (37.1)
patients at baseline*	Pacemaker, n (%)	2 (7.4)	6 (17.1)
	Acroparesthesias, n (%)	26 (96.3)	29 (82.8)
	Stroke, n (%)	2 (7.4)	5 (14.3)
	TIA, n (%)	2 (7.4)	0
	Hypohydrosis, n (%)	20 (74)	12 (34.3)
	Angiokeratomas, n (%)	21 (77.7)	9 (25.7)
	ENT involvement, n (%)	9 (33.3)	8 (22.8)
	Cornea verticillata, n (%)	18 (66.6)	14 (40)
	α-GLA activity, nmol/h/mg, median	0.57	1.36
	Lyso-GL3 at baseline, ng/ml	60.06	6.34

*The cohort of patients evaluated in Fundeni Expert Center for Rare Diseases of the Reno-Urinary System.



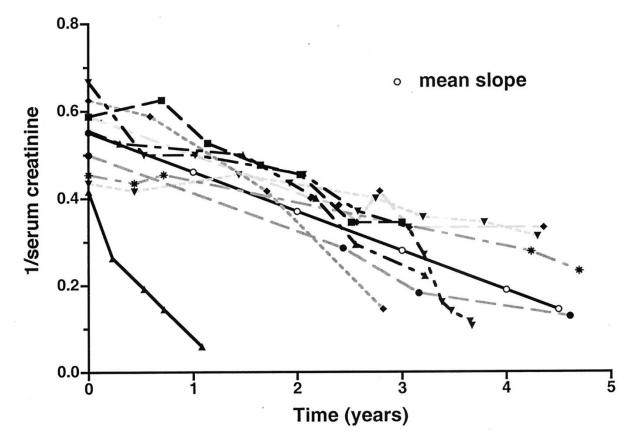
Treatment of Fabry nephropathy

The following therapeutic goals should be aimed:

- reduction of complaints
- delaying/preventing the progression of organ manifestations
- improvement of quality of life
- improvement/ normalization of life expectancy

Optimal care involves both disease-specific and supportive treatment and regular follow up with a multidisciplinary team experienced in the management of Fabry disease

Therapeutic renal goals for patients with Fabry disease


Patient subgroup	Therapeutic goals			
Mild kidney involvement, eGFR at normal levels or hyperfiltration (eGFR > 90 mL/min/1.73m ²)	• eGFR should be maintained in an age-appropriate normal range	Patient subgroup	Therapeutic goals	
Mild-to-moderate kidney function impairment, mild eGFR decreases (eGFR 60–90 mL/min/1.73m ²)	• Prevent progression of eGFR loss and stabilize eGFR level	Mild-to-moderate kidney function impairment; albuminuria levels: <30 mg/g (< 3 mg/mmol)	• Normalize/stabilize albuminuria	
Moderate-to-severe kidney function impairment, mild-to- moderate eGFR decreases	 Prevent progression of eGFR loss to delay/avoid ESKD 	Albuminuria levels: 30–300 mg/g (3–30 mg/mmol)	Normalize/stabilize albuminuria	
(eGFR 45–59 mL/min/1.73m ²)		Albuminuria levels: >300	• Reduce levels to <300 mg/g	
Moderate-to-severe eGFR	Prevent progression of eGFR loss to delay/avoid ESKD	mg/g (> 30 mg/mmol)	(<30 mg/mmol)	
decreases (eGFR 30–44 mL/min/1.73m ²)		Moderate-to-severe kidney function impairment	Slow progression of albuminuria	
Severe eGFR decreases	Decrease the slope of eGFR as much as possible;			
(eGFR 15–29 mL/min/1.73m ²)	delay the progression to ESKD			
ESKD	 Provide optimal RRT by dialysis or RTx (first choice therapy), maintain ERT to avoid damage to heart, CNS Suggest and encourage RTx before dialysis to prevent impact on other organs 	Wanner C. et al. Molecular Ge	enetics and Metabolism 2018; 189-	

Natural course of Fabry nephropathy

Mean GFR decline = 12,2 ml/min/year

- A loss of up to 1 ml/min/1.73m²/year is considered normal.
- Stabilization of renal function is achieved if a patient has a GFR slope loss ≤ 1-3 ml/min/1.73m²/year.
- Progression of renal disease is demonstrated by an annual decrease in GFR > 3 ml/min/1.73m².
- Rapid progression is considered when GFR decrease is > 5 ml/min/1.73m²/year.

KDIGO clinical practice guideline for the evaluation and management of CKD. Kidney Int 2013 Kantola IM. Nephrol Dial Transplant 2019

Fabry disease specific treatment

				sphingolipid metabolism inhibition of glycosylceramide synthesis	
Dru	ıg Name	Mechanism of Action	Route of Administration		
	Agalsidase-beta	Recombinant α-GAL	iv., every 2 weeks	GBA 3.2.1.45 (Gaucher disease)	cement
Enzyme replacement	Agalsidase-alpha	Recombinant α -GAL	iv., every 2 weeks	GLB1 2.4.1.274 therapy replacement of any second se	of defect
therapy	New approved ERT - Pegunigalsidase alfa	Plant derived α -GAL	iv., every 2 weeks	A4GALT 2.4.1.228	AGAL to
Chaperone	Migalastat	Binds reversibly to the active site of the amenable mutant of α -GAL	Oral, every other day	Chaperone therapy increase of endogenous AGAL activity by protein stabilization GLA 3.2.1.22 (Fabry disease) B3GALNT1 2.4.1.79	nide (GD3)
Investigational drugs	Substrate reduction therapy: lucerastat, venglustat	Glucosylceramide synthase inhibitor	Oral, daily	gene therapy replacement of defect enzyme by endogenous produced functional AGAL	
0	Gene therapy				
				Galactosylglobosides	

Malte Lenders and Eva Brands. Nephrol Dial Transplant 2021; 36: ii14-ii23 Umer M et al. Pharmaceuticals 2023, 16(2), 320

- RAAS blocker (ACEI or ARB)
- **General management of CKD** regarding anemia treatment, statin indication, and CKD-MBD prevention and management according to guidelines
- **SGLT2 inhibitors** might be of future interest due to the general cardiovascular and kidney protection in non-diabetic patients.

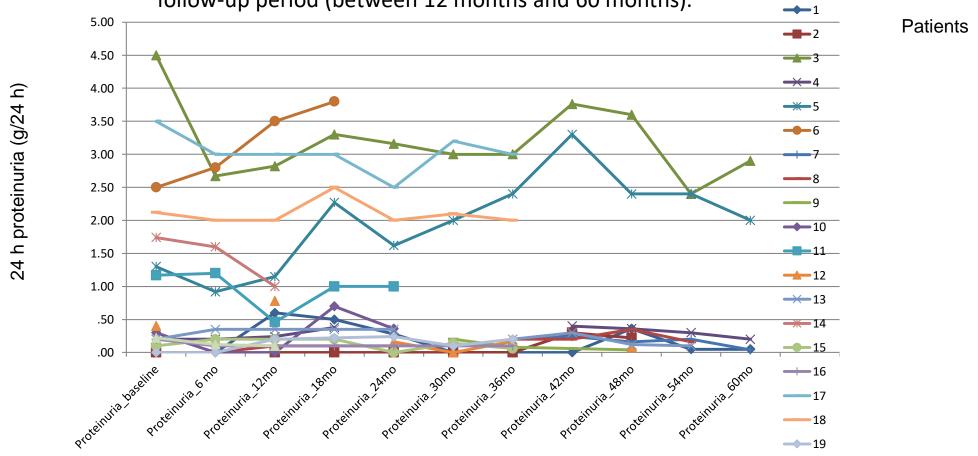
Since 2006 – Enzyme replacement therapy with Agalsidase beta has been started as a compassionate program

Since 2008 - Romanian National Program for Rare Diseases, which provides the source of funding of the treatment for rare diseases, including treatment with Agalsidase beta for Fabry disease

Since 2019 - Migalastat treatment has been approved in Romania

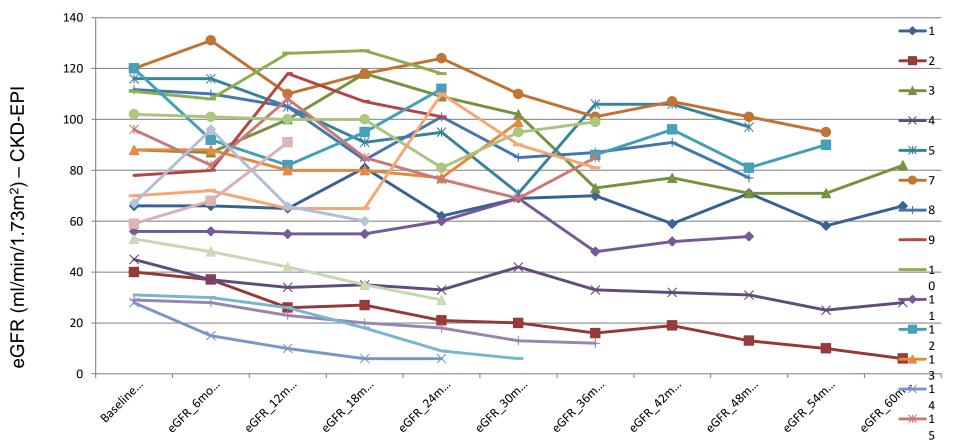
Since 2021 - Agalsidase alpha has been approved

Patients with Fabry disease *	Total N	Treated N (%)	Type of treatment		
	67	48 (71.6%)	Agalsidase beta	Migalastat	Agalsidase alfa
Males	27	26 (96.3%)	21	4	1
Females	35	21 (60%)	15	6	-
Children	5	1 (20%) (10 yo boy)	1	-	-


*The cohort of patients evaluated in Fundeni Expert Center for Rare Diseases of the Reno-Urinary System.

Evolution of proteinuria for 19 patients treated with Fabry specific therapy during follow-up period*

Evolution of proteinuria for 19 patients treated with Fabry specific therapy during follow-up period (between 12 months and 60 months).


*Experience of Fundeni Expert Center for Rare Diseases of the Reno-Urinary System.

Treatment effect on GFR slope can predict clinical benefit*

Evolution of eGFR for 22 patients treated with Fabry specific therapy during follow-up period (between 18 months and 60 months).

*Experience of Fundeni Expert Center for Rare Diseases of the Reno-Urinary System

Long-term outcome of the "Fundeni" Expert Center cohort

	Before the initiation of Fabry disease specific treatment	After the initiation of Fabry disease specific treatment	
Cardiovascular event (Arrhythmia, congestive heart failure, myocardial infarction, significant cardiac procedure, complete heart block)	3 (1M,2F)	6 (4M/2F)	
Age at cardiovascular event	53.4±8.2 (range 45-62)		
Cerebrovascular event (TIA, stroke)	9 (4M/5F)	5 (4M/1F)	
Age at cerebrovascular event	45.3±12.1 (range 26-65)		
Renal event (reaching ESKD, dialysis or kidney transplant)	7 (6M,1F)	4 (3M/1F)	
Age at renal event	37.27±14.8 (range 18-64)		
Death	2 (1M/1F)	6 (5M/1F)	
Age at death	52.3± 11.7 (range 33-66)		

*Experience of Fundeni Expert Center for Rare Diseases of the Reno-Urinary System. Not published data.

- Fabry disease is heterogeneous, with classical and non-classical presentations
- Screening and testing is important to identify new patients
- Kidney biopsies increase knowledge about histological lesions and could be used for identifying new treatment targets in Fabry disease
- Factors influencing GFR and GFR slope in FD patients are: age, gender, baseline CKD stage, baseline proteinuria, and the presence of glomerular sclerosis on kidney histology
- Updated recommendations underline the importance of early treatment initiation in both males and females, and stress the importance of patient-specific care and a multidisciplinary approach to disease management.

Thank you!