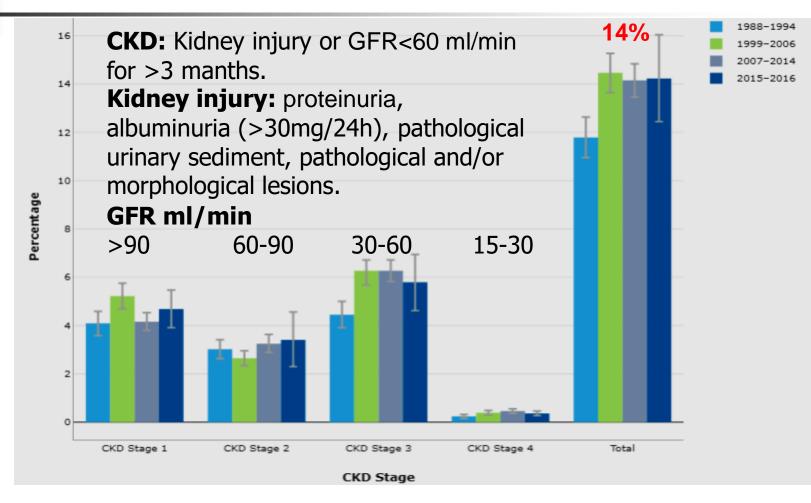
Non-steroidal mineralocorticoid receptor antagonists (ns MRA): a new therapeutic pillar for cardiorenal protection in patients with CKD and T2D

I. Stefanidis,

Prof. Internal Medicine-Nephrology, Faculty of Medicine, Larissa, University of Thessaly.

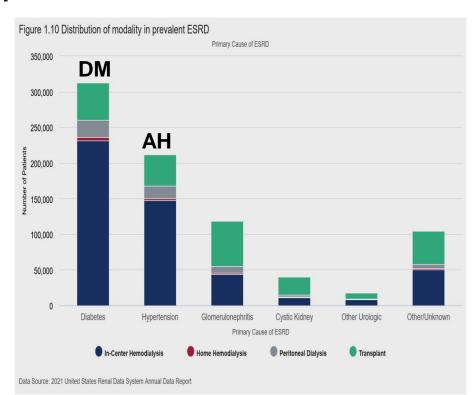
Conflict of interest

Honorary payment by Bayer



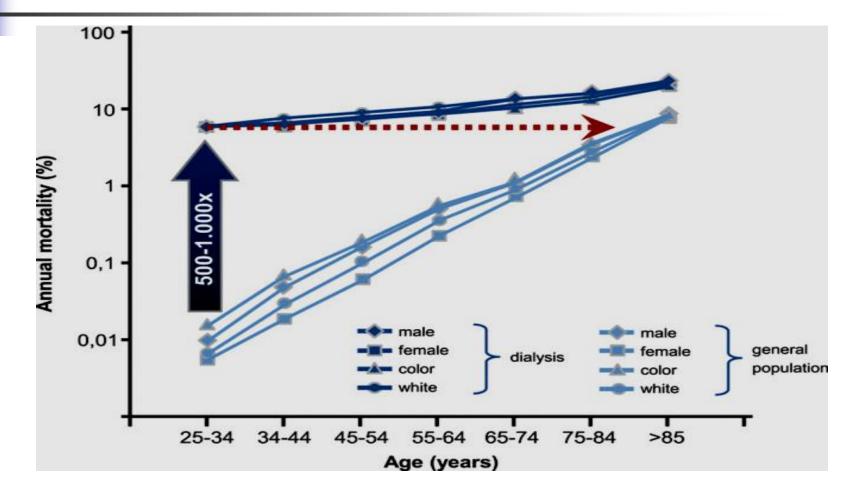
Non-steroidal MRA in DKD

- Epidemiology
- Diagnosis
- Mechanisms of action (finerenone)
- Clinical trials, Clinical Guidelines
- Special issues, short case analysis


Chronic Kidney Disease (CKD)

Collins et al. Am J Kidney Dis. 2014;63(1)(suppl 1):e1-e420.

Epidemiology – etiology CKD



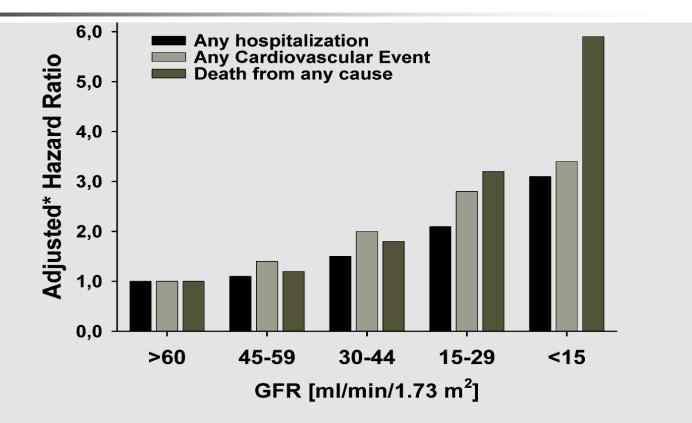
- Diabetes mellitus
- Arterial hypertension
- Cardiovascular diseases
- Age (>60 years)
 - Family history of endstage CKD

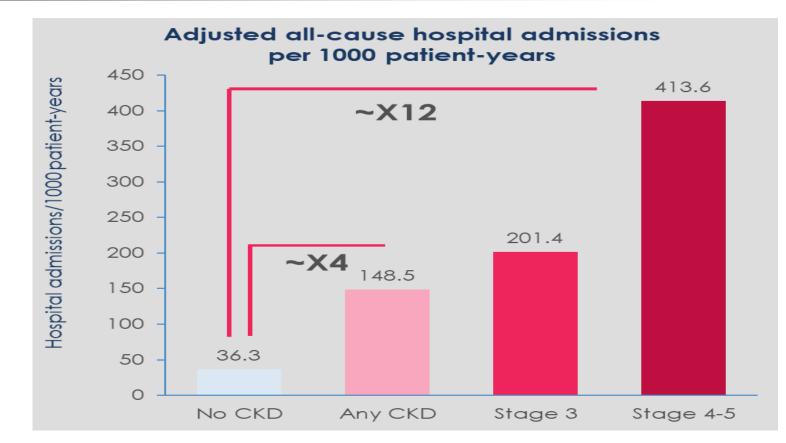
Prevalent ESRD rates, by primary diagnosis, adjusted for age, gender, & race. USRDS Annual Data Report, 2021

Cardiovascular mortality in hemodialysis

Levey AS et al. Am J Kidney Dis 1998; 32: 853-906.

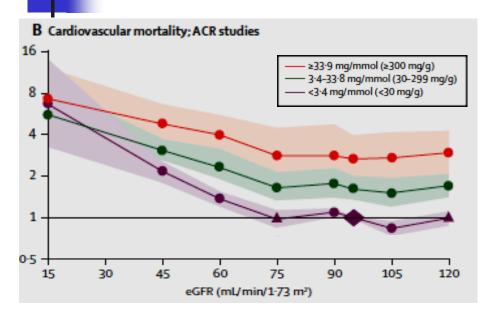
Cardiovascular mortality in CKD




Figure. Adjusted hazard ratio among 1,120,295 ambulatory adults, according to the estimated GFR (eGFR).

*Adjustment for age, gender and age.

Go et al. N Engl J Med 2004;351:1296-1305.

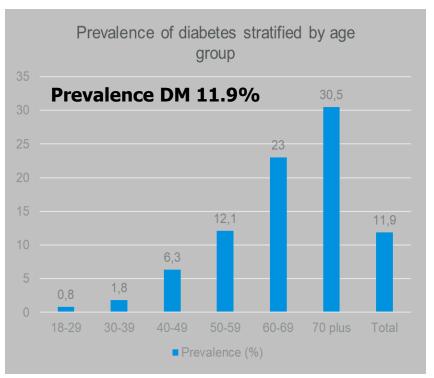

Cardiovascular mortality in CKD

United States Renal Data System. 2021 USRDS Annual Data Report. 2021. https://adr.usrds.org/2021

CKD as cardiovascular risk factor

Matsushita K et al. Association of estimated glomerular filtration rate and albuminuria with allcause and cardiovascular mortality in general population cohorts: a collaborative meta-analysis. Lancet. 2010.

Gansevoort RT et al. Chronic kidney disease and cardiovascular risk: epidemiology, mechanisms, and prevention. Lancet.2013

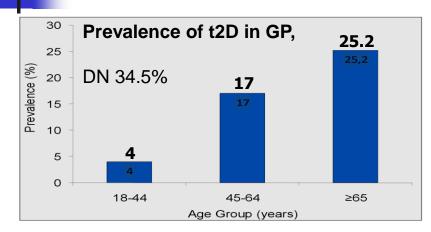

Progression of CKD by GFR and Albuminuria Categories			Albuminuria categories Description and range				
			A1	A2	A3		
			Normal to mildly increased	Moderately increased	Severely increased		
			<30 mg/g <3 mg/mmol	30-299 mg/g 3-29 mg/mol	≥300 mg/g ≥30 mg/mmol		
	G1	Normal to high	≥90				
73m²) e	G2	Mildly decreased	60-90				
GFR categories (ml/min/1.73m ²) Description and range	G3a	Mildly to moderately decreased	45-59				
tegories (scription	G3b	Moderately to severely decreased	30 - 44				
GFR ca De	G4	Severely decreased	15-29				
	G5	Kidney failure	15				

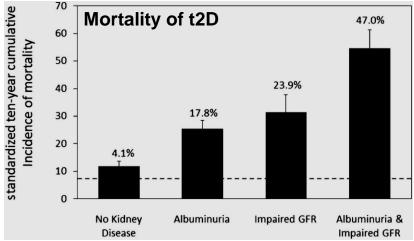
Kidney Disease: Improving Global Outcomes (KDIGO) CKD Work Group. Chapter 1: definition and classification of CKD. Kidney Int Suppl (2011). 2013;3:19-62.

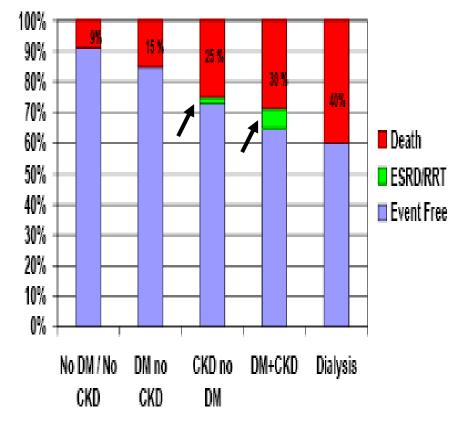
Diabetes epidemiology in Greece

- Results of the first national Health Examination Survey (HES) on the prevalence of diabetes, its pharmacologic treatment and level of control, as well as prediabetes in Greece.
- Data were derived from the National Survey of Morbidity and Risk Factors (EMENO), in a randomly selected, representative sample of the adult Greek population.
- Total diabetes prevalence was 11.9% (95% CI: 10.9–12.9), known diabetes 10.4% (9.5–11.4), and unknown 1.5% (1.1–1.9), with considerable increase in older age groups.

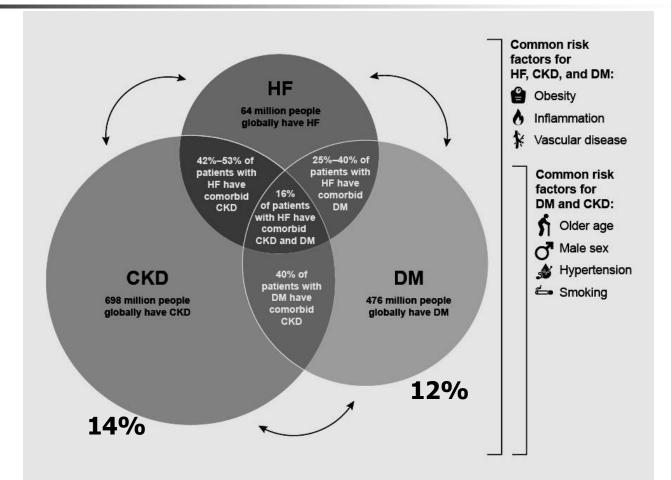
Makrilakis K, Kalpourtzi N, Ioannidis I, et al. Prevalence of diabetes and pre-diabetes in Greece. Results of the First National Survey of Morbidity and Risk Factors (EMENO) study. Diabetes Res Clin Pract. 2021;172:108646. https://doi.org/10.1016/j.diabres.2020.108646


Hellenic Diabetic Nephropathy Study (HDNS) Group: REDIT-2 DIAG study


Among the entire population (n = 1759), the overall prevalence of DCKD was 43% including mild, moderate and severe CKD.				Albuminuria categories Description and range (mg albumin/g creatinine)		
				A1	A2	A3
				0–29	30-299	>300
	G1	High and optimal	>90	24	10	1
	G2	Mild	60-89	33	14	2
GFR categories description and range	G3a	Mild-moderate	45-59	5	5	1
	G3b	Moderate-severe	30-44	2	2	1
	G4	Severe	15-29	0,3	0,6	1
	G5	Kidney failure	<15	0,2	0,1	4


Migdalis IN, Papanas N, Raptis AE, et al. The prevalence of diabetic chronic kidney disease in adult Greek subjects with type 2 diabetes mellitus: A series from hospital-based diabetes clinics. Diabetes Res Clin Pract. 2020;166:108243. https://doi.org/10.1016/j.diabres.2020.108243

DM and CKD



CDC National Diabetes Statistics Report, 2017 De Boer et al. JAMA 2011; 305:2532–2539 Afkarian et al. *J Am Soc Nephrol 2013.* 24:302–308

Interrelationship of DM CKD and HF, common risk factors

Vijay et al. Heart Failure in Patients with Diabetes and Chronic Kidney Disease: Challenges and Opportunities. Cardiorenal Med. 2022;12:1-10.

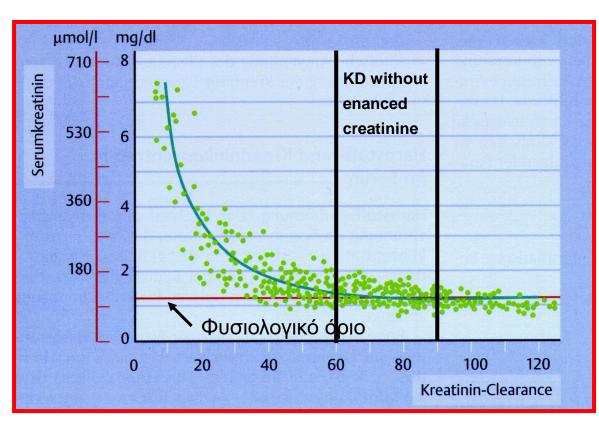
Key points 1

- The prevalence of CKD in the general population is 14% and T2DM 12%.
- DM followed by hypertension are the most common causes of CKD and ESRD. DCKD is found in 40% of DM patients.
- Mortality and morbidity of CKD are many times higher than in the general population. They even higher when T2D and CKD coexist.
- A prerequisite for reducing DKD mortality is the timely intervention, with an efficient screening program and implementation of evidence-based (EB) and guidelines directed medical treatment (GDMT).

Albuminuria

- Albuminuria is measured in 24h urine (UA mg/d) or as a ratio of urinary creatinine in a random (morning) urine sample (UACR mg/g).
- The concentration of albumin and creatinine in the urine sample is measured and calculated:

<u>Urine albumin (mg/dL)</u> = UACR (mg/g) \cong Albumin excretion in mg/day Urine creatinine (g/dL)

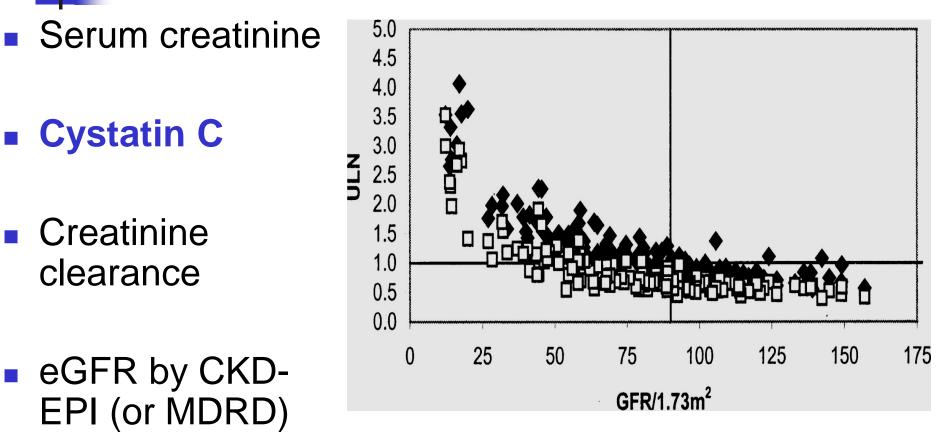

 The limit is 30mg/g for moderate and 300mg/g for severe albuminuria.

https://www.niddk.nih.gov/health-information/professionals/clinical-tools-patient-education-outreach/quick-reference-uacr-gfr

Determination of GFR

- Serum creatinine
- Cystatin C
- Creatinine clearance
- eGFR by CKD-EPI (or MDRD)

Hoek et al. Nephrol. Dial. Transplant. 2003;18:2024-2031



Determination of GFR

Cystatin C

Creatinine clearance

eGFR by CKD-**EPI** (or MDRD)

Hoek et al. Nephrol. Dial. Transplant. 2003;18:2024-2031

Determination of GFR

Serum creatinine CKD EPI & MDRD GFR Calculator - (With SI Units)

Cystatin C

Creatinine clearance

4 variable MDRD CKD EPI Equation (with SI Units) using standardized serum creatinine, age, race, gender

> by Stephen Z. Fadem, M.D., FACP, FASN and Brian Rosenthal

> > 1.3

55

<u>S</u> ei	rum cre	atir	ine
۲	mg/dL	0	µmol/L

NOTE: CKD EPI GFR is only valid with creatinine methods are traceable to IDMS

<u>A</u> ge	
-------------	--

Race

Gender

TRACEABLE TO IDMS (What is this?)

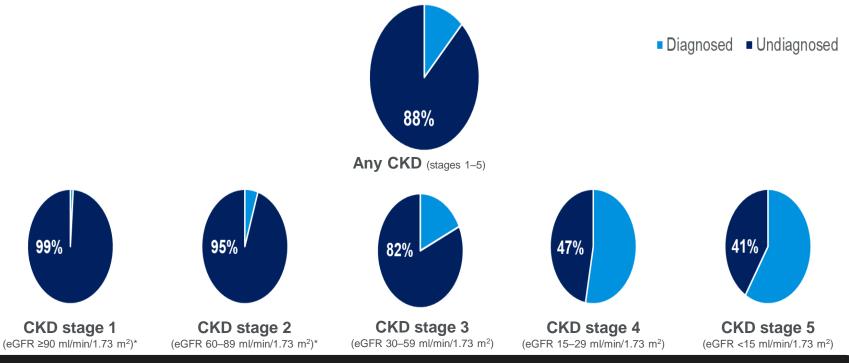
🖸 Male 🔘 Female O No O Yes

vears

African American
All other races*

CKD EPI Value: 61 mL/min/1.73 m² in a 55 year old non African American male.

MDRD GFR: 57 mL/min/1.73 m² in a 55 year old non African American male.


eGFR by CKD-**EPI (or MDRD)**

GFR calculators: http://www.kidney.org/professionals/KLS/gfr_calculator.cfm

DKD is under-diagnosed in T2D

5036 patients with T2D and CKD: The ADD-CKD study

85% of patients had eGFR assessed during the 15 months prior to study participation, but only 47% had UACR assessment

*+UACR ≥30 mg/g or positive protein in urine ADD-CKD, Awareness, Detection and Drug Therapy in Type 2 Diabetes and Chronic Kidney Disease Szczech LA, *et al. PLoS One* 2014;9:e110535

Screening for DKD (DN) – ADA, KDIGO

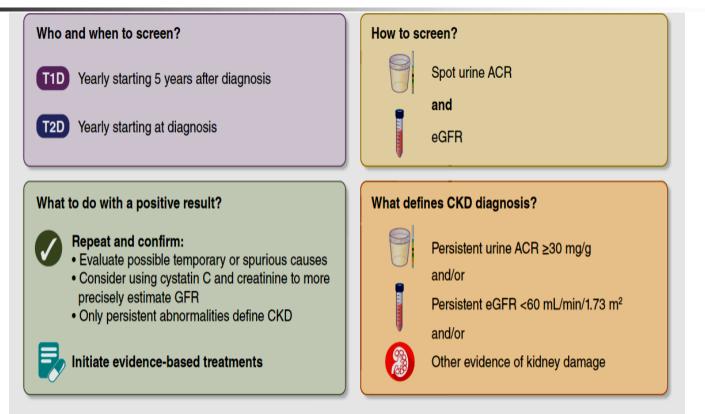
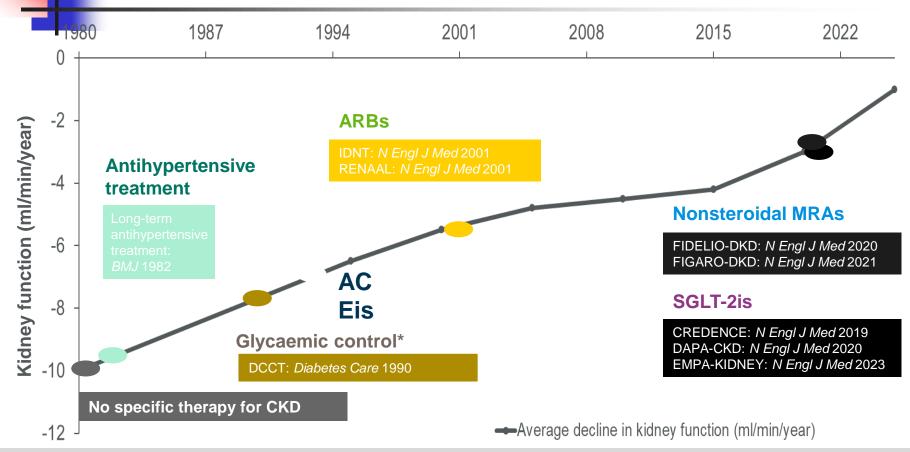


Figure 1—CKD screening and diagnosis for people living with diabetes. Screening includes measurement of both urine albumin and eGFR. Abnormalities should be confirmed. Persistent abnormalities in either urine ACR or eGFR (or both) diagnose CKD and should lead to immediate initiation of evidence-based treatments. ACR, albumin-to-creatinine ratio; CKD, chronic kidney disease; eGFR, estimated glomerular filtration rate; T1D, type 1

Diabetes Management in Chronic Kidney Disease: A Consensus Report by the American Diabetes Association (ADA) and Kidney Disease: Improving Global Outcomes (KDIGO)

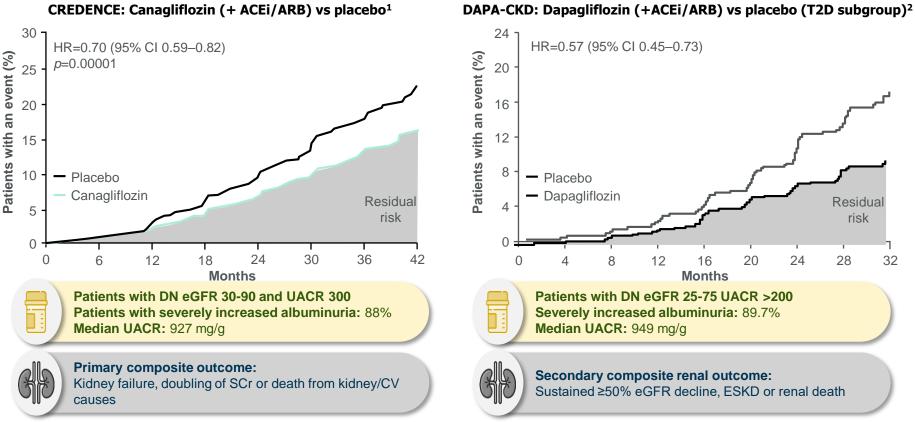

Key points 2

- Diagnosis of CKD (and DN): Urine albumin measurement (preferably UACR in a random sample). Calculation of eGFR (CKD-EPI Equation).
- In DM DKD is largely under-diagnosed. The frequency of measuring UACR and eGFR (only in 47 and 88 % respectively) is unsatisfactory.
- Nephrologists have a key role in establishing UACR measurement and a timely screening.

ADD-CKD, Awareness, Detection and Drug Therapy in Type 2 Diabetes and Chronic Kidney Disease Szczech LA, et al. PLoS One 2014;9:e110535

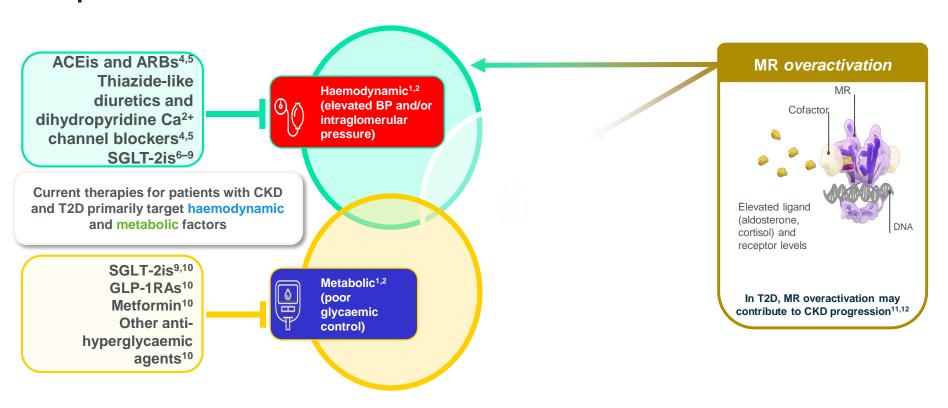
Prevention of CVD and DKD in T2D during the last 40-years

Recent findings on the cardiorenal benefits of finerenone and SGLT-2is have changed the therapeutic landscape for CKD and T2D


*Microvascular complications.

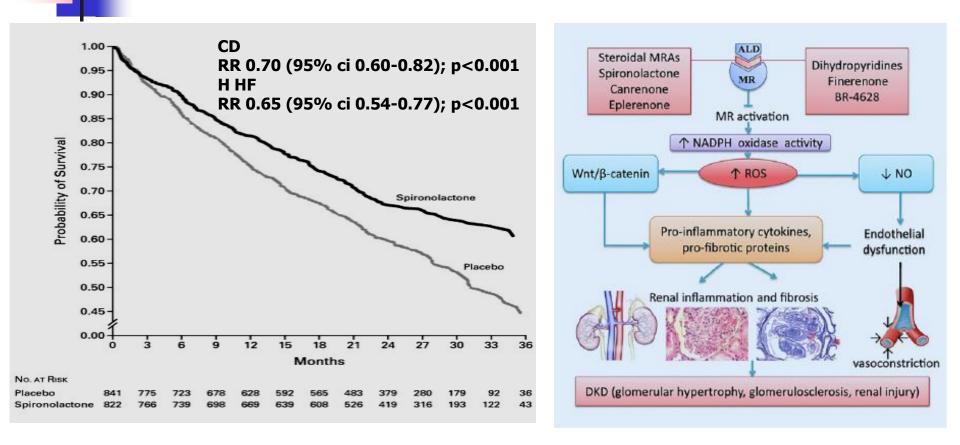
ACEi, angiotensin-converting enzyme inhibitor; ARB, angiotensin receptor blocker; MRA, mineralocorticoid receptor antagonist; SGLT-2i, sodium-glucose co-transporter-2 inhibitor.

Adapted from Naaman SC & Bakris GL. In: Chronic Kidney Disease and Type 2 Diabetes. Arlington: American Diabetes Association; 2021. p28–32.

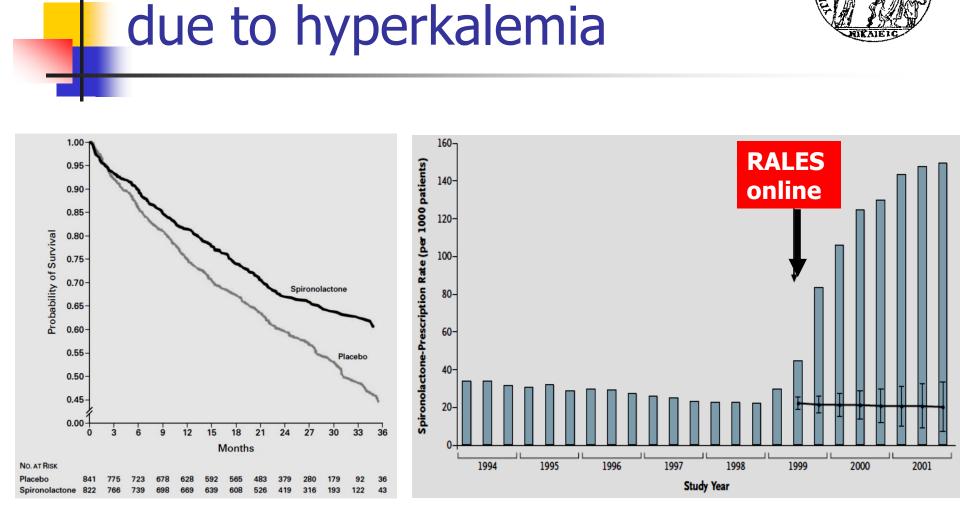

In DKD risk remains still very high

CI, confidence interval; eGFR, estimated glomerular filtration rate; ESKD, end-stage kidney disease; HR, hazard ratio; UACR, urine albumin-to-creatinine ratio; RAAS, renin-angiotensin-aldosterone system; SCr, serum creatinine 1. Perkovic V, et al. N Engl J Med 2019;380:2295–2306; 2. Wheeler DC, et al. Lancet Diabetes Endocrinol 2021;9:22–31

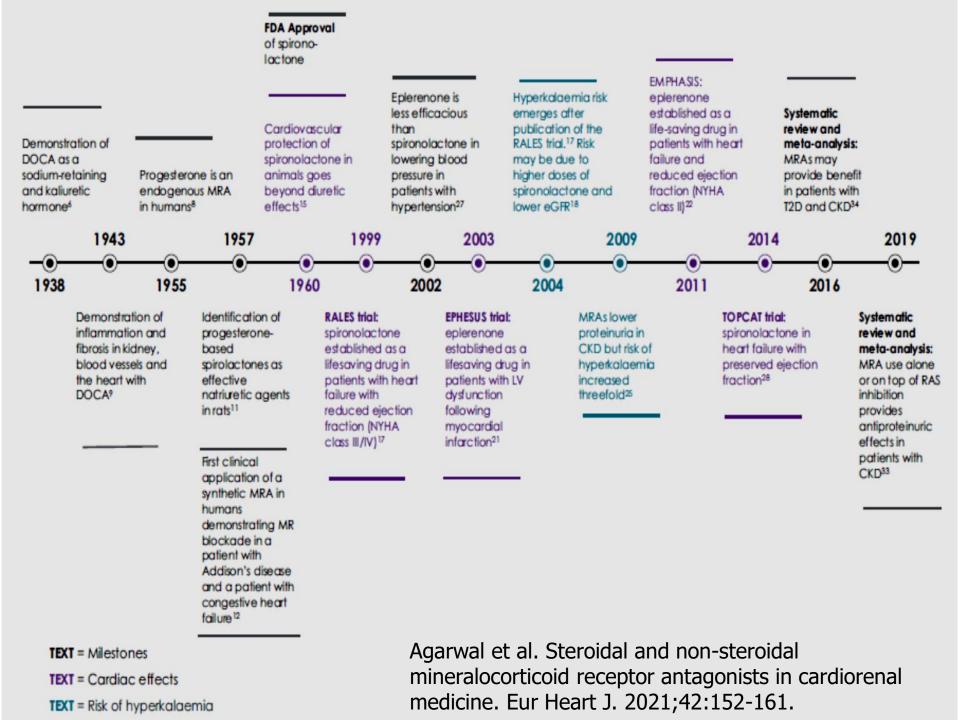
Pathogenesis and treatment of DKD¹⁻³



BP, blood pressure; GLP-1RA, glucagon-like peptide-1 receptor agonist; MoA, mechanism of action


Alicic RZ, et al. Clin J Am Soc Nephrol 2017;12:2032–2045; 2. Mora-Fernández C, et al. J Physiol 2014;18:3997; 3. Bauersachs J, et al. Hypertension 2015;65:257–263;
 American Diabetes Association. Diabetes Care 2022;45(Suppl 1):S175–S184; 5. American Diabetes Association. Diabetes Care 2022;45(Suppl 1):S175–S184; 5. American Diabetes Association. Diabetes Care 2022;45(Suppl 1):S174–S174;
 Kidokoro K, et al. Circulation 2019:140;303–315; 7. Zelniker TA & Braunwald E. J Am Coll Cardiol 2018;72:1845–1855; 8. Heerspink HJ, et al. Circulation 2016;134:752–772; 9. Zelniker TA & Braunwald E. J Am Coll Cardiol 2020;75:422–434; 10. American Diabetes Association. Diabetes Care 2022;45(Suppl 1):S125–S143;
 Agarwal R, et al. Eur Heart J 2021;42:152–162; 12. Agarwal R, et al. Nephrol Dial Transplant 2022;37:1014–1023

Aldosterone (steroidal AMR)

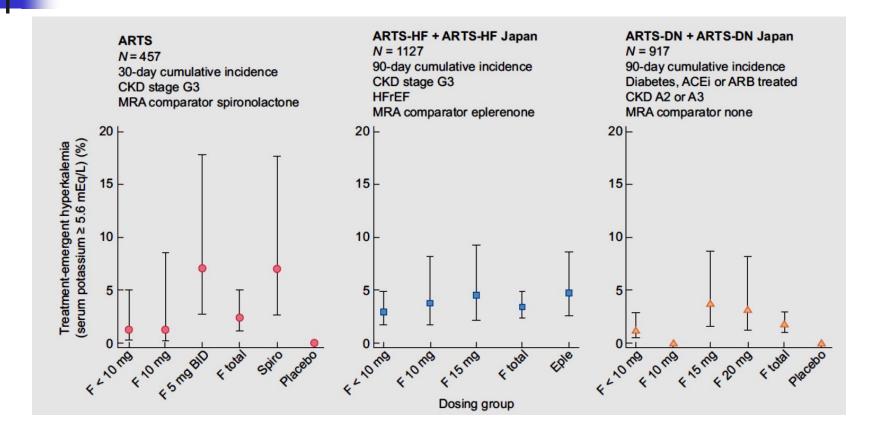


Pitt et al. Randomized Aldactone Evaluation Study. N Engl J Med. 1999;341:709-17. Haller H. Herz. 2022;47:401-409.

RALES and hospitalization

Pitt B, et al; for Randomized Aldactone Evaluation Study Investigators. N Engl J Med. 1999;341(10):709-717. Juurlink DN, et al. N Engl J Med. 2004;351(6):543-551.

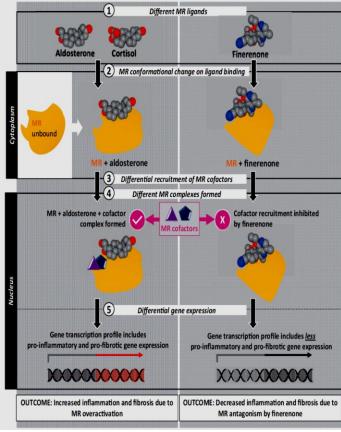
Finerenone vs. Non-steroidal MRA


	Steroidal MRA		Non-steroidal MRA	3000 г	Accumulation of spironolactone and its active metabolites	
	Spironolactone	Eplerenone	Finerenone			
Active metabolites	Yes	No	No	2500 -	7a-thiomethylspiron	lactone
Half-life	≥24 h	4-6 h	2.8h			
Distribution (kidney-heart)	>6:1	≈3:1	1:1	2000 -		
Antagonism over MR				EA		metabolites
Power	High	Low	High	· 2 1500 -	бβ-ћуд	oxy-7a-
Selectivity	Low	Medium	High (Bulky [large] and passive)	, CC,	thiomethylspiron	lactone
Effect on recruitment of cofactors (without aldosterone)	Partial agonist	Partial agonist	Inverse agonist	₹ 1000 -)
Effect on recruitment of cofactors (with aldosterone)	Inhibition	Inhibition	Blocking			
Effect on inflammation and fibrosis	Moderate	Moderate	High	500 -		
Blood pressure reduction	Marked	Marked	Moderate (greater at high doses)	500		
Effect on proteinuria and kidney damage	Moderate	Moderate	Powerful		Spiron	lactone
Hyperkalemia risk	High	High	Moderate	0 -	Day 1 Day 8 Day 15	
Other adverse effects	Gynecomastia				Days of administration of spironolactone 100 mg once daily	

González-Juanatey et al. Cardiorenal benefits of finerenone: protecting kidney and heart. Ann Med. 2023;55:502-513.

Agarwal et al. Steroidal and non-steroidal mineralocorticoid receptor antagonists in cardiorenal medicine. Eur Heart J. 2021;42:152-161.

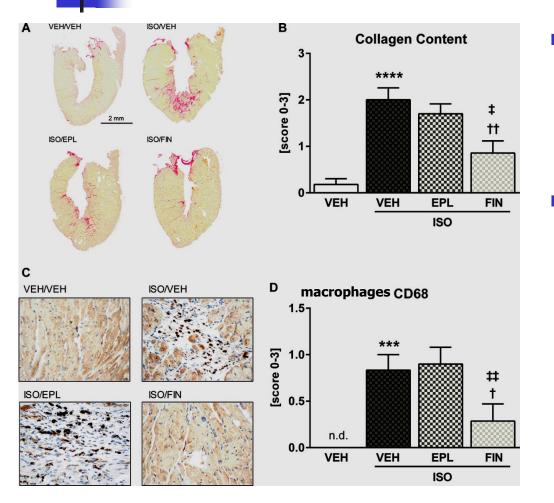
Hyperkalemia moderate



Agarwal et al. Nephrol Dial Transplant. 2022;37:1014-1023.

Finerenone vs. Non-steroidal MRA

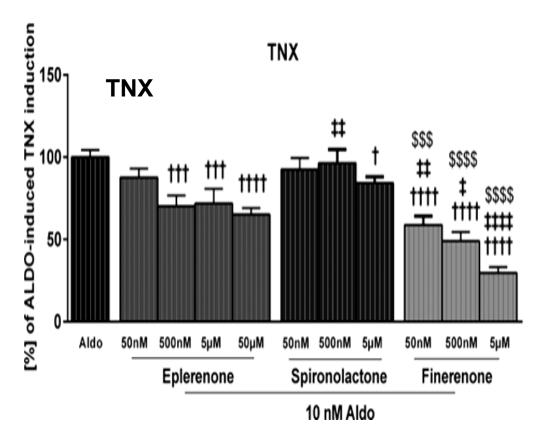
	Steroid	al MRA	Non-steroidal MRA Finerenone	
	Spironolactone	Eplerenone		
Active metabolites	Yes	No	No	
Half-life	≥24h	4-6h	2.8h	
Distribution (kidney-heart)	>6:1	≈3:1	1:1	
Antagonism over MR				
Power	High	Low	High	
Selectivity	Low	Medium	High (Bulky [large] and passive)	
Effect on recruitment of cofactors (without aldosterone)	Partial agonist	Partial agonist	Inverse agonist	
ffect on recruitment of cofactors (with aldosterone)	Inhibition	Inhibition	Blocking	
ffect on inflammation and fibrosis	Moderate	Moderate	High	
Blood pressure reduction	Marked	Marked	Moderate (greater at high doses	
Effect on proteinuria and kidney damage	Moderate	Moderate	Powerful	
Hyperkalemia risk	High	High	Moderate	
Other adverse effects	Gynecomastia			



González-Juanatey et al. Cardiorenal benefits of finerenone: protecting kidney and heart. Ann Med. 2023;55:502-513.

Agarwal et al. Steroidal and non-steroidal mineralocorticoid receptor antagonists in cardiorenal medicine. Eur Heart J. 2021;42:152-161.

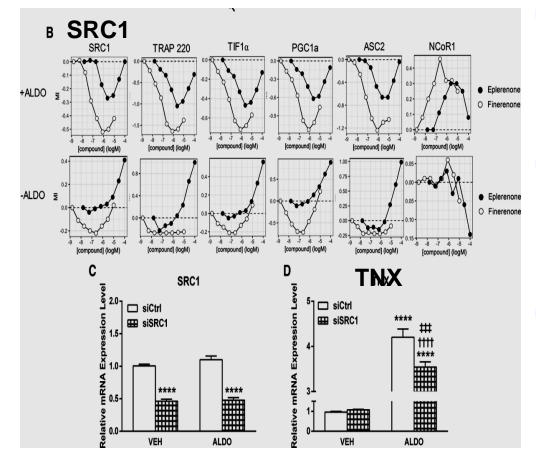
Selective Mineralocorticoid Receptor Cofactor Modulation – Molecular Basis for Antifibrotic Activity of Finerenone



- Isoproterenol-infused mice an experimental model of cardiac fibrosis and hypertrophy.
- Fibrosis and heart collagen content is inhibited by finerenone, not eplerenone. The same effect is seen on macrophage content.

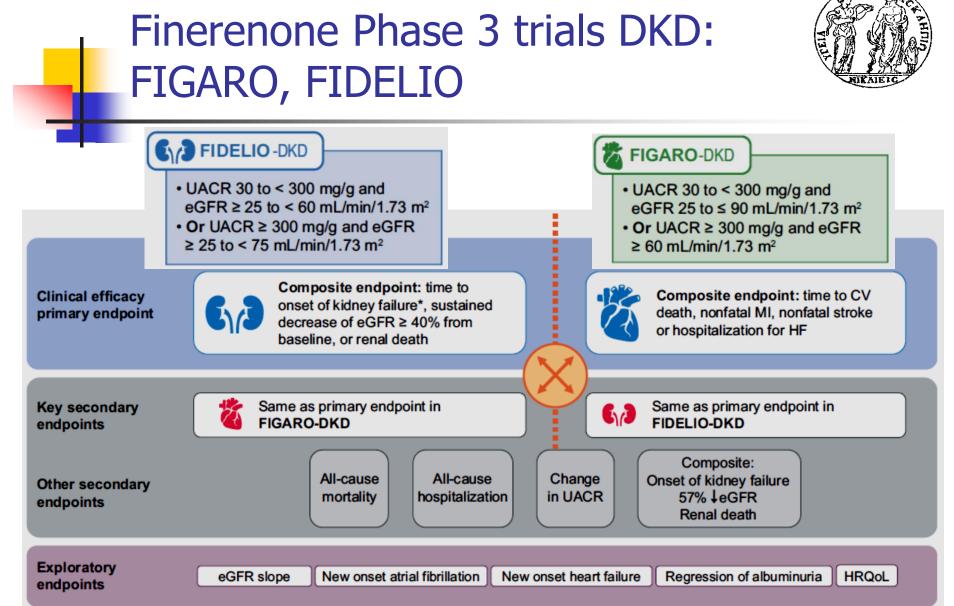
Grune et al. Hypertension. 2018;71:599-608.

Selective Mineralocorticoid Receptor Cofactor Modulation – Molecular Basis for Antifibrotic Activity of Finerenone



- In culture of cardiac cells the same effect. TNX a fibrosis inducing factor in cellular level is significantly reduced by finerenone.
- Finerenone has higher MR activity and inverse agonist activity. It inhibits and practically blocks binding of MRA cofactors.
- The inhibition of fibrosis is attributed to the latter effect of finerenone on MR binding of cofactors.

Selective Mineralocorticoid Receptor Cofactor Modulation – Molecular Basis for Antifibrotic Activity of Finerenone


- In culture of cardiac cells the same effect. TNX a fibrosis inducing factor in cellular level is significantly reduced by finerenone.
- Finerenone has higher MR activity and inverse agonist activity. It inhibits and practically blocks binding of MRA cofactors.
- The inhibition of fibrosis is attributed to the latter effect of finerenone on MR binding of cofactors.

Grune et al. Hypertension. 2018;71:599-608.

Key points 3

- Finerenone is a non-steroidal powerful and selective MRA.
- It is characterized by a short half life (2.8h), low concentration in the kidneys vs. the heart.
- In Finerenone MRA-induced hyperkalemia is moderate.
- Finerenone acts as an inverse agonist blocking binding of active cofactors on MR.
- Inhibits more powerfully tissue fibrosis and inflammation.

Pitt et al. FIGARO-DKD. N Engl J Med. 2021;385:2252-2263. Bakris et al. FIDELIO-DKD. N Engl J Med. 2020;383:2219-2229.

Finerenone (non-steroidal AMR)

Cardiovascular Events with Finerenone in Kidney Disease and Type 2 Diabetes

Pitt B et al. DOI: 10.1056/NEJMoa2110956

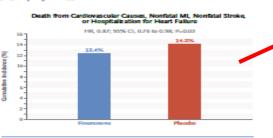
CLINICAL PROBLEM

Enermone, a selective nonsteroidal mineralocorricoid receptor antagonist, improves cardiorenal outcomes in patients with stage 3 or 4 chronic kidney disease (CRD) with severely elevated albuminutia and type 2 diabetes. Whether finerenone is beneficial in patients with diabetes and less-advanced CKD is unclear.

CLINICAL TRIAL

Design: A phase 3, multicenter, randomized, placebo-controlled trial examined the efficacy and safety of finerenose in adults with type 2 diabetes and a range of CRD stages. Intervention: 7437 patients with diabetes and CKD treated with a maximum-dose renin-angiorensin system in hibitor were assigned to receive oral finerenone or placebo. Eligible patients had pentissent, moderately elevated albuminuria plus an estômated glomerular filtration rate (sGFR) of 25 to 90 ml per minute per 1.73 m² (stage 1 or 2 CKD). The primary outcome was a composite of death from cardiovascular causes, nonfaral myocardial infarction, nonfaral stroke, or bospitalisation for heart filtrate.

RESULTS

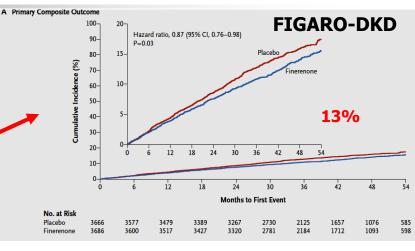

Efficacy: During a median 3.4 years of follow-up, the incidence of primary outcome events was lower with finerenone than with placebo, a difference driven mainly by a lower incidence of hospitalization with fineresone.

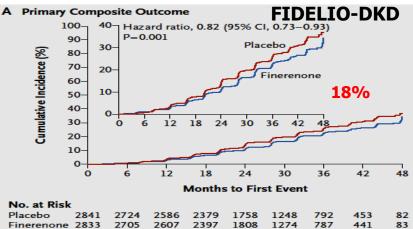
Safety: The incidence of serious adverse events was similar in the two groups. Hyperkalemia occurred more often with finerenone but did not result in any deaths and rarely resulted in treatment discontinuation.

LIMITATIONS AND REMAINING QUESTIONS

- Few Black patients were included. Patients with symptomatic heart failure with a reduced ejection fraction were excluded.
- Current clinical guidance recommends sodium-glucose cotransporter 2 inhibitors or glucagon-like peptide-1 receptor agon loss in parients with type 2 diabetes and CKD. Whether using finerenone with these agents of fers additive cardiorenal benefits is undear.

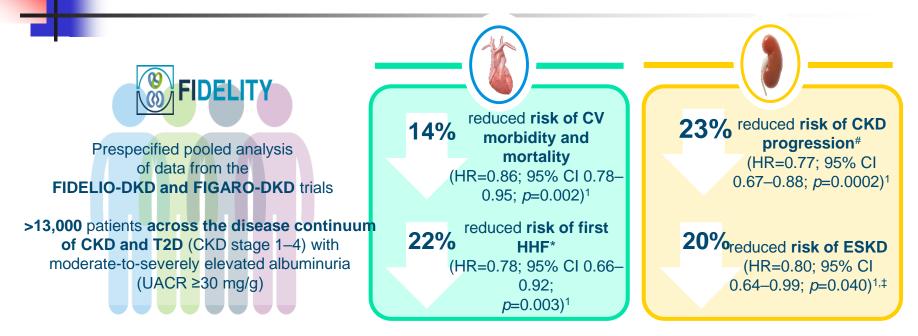
Links: Full Article | NEJM Quick Take


Hospitalization for Heart Failure



CONCLUSIONS The mineralocorticoid receptor antagonist finerenone lowered the risk of major adverse cardiovascular events among patients with type 2 diabetes and a wide range of CKD stores.

Pitt et al. FIGARO-DKD. N Engl J Med. 2021;385:2252-2263. Bakris et al. FIDELIO-DKD. N Engl J Med. 2020;383:2219-2229.


N=7352, Median follow up 3.4 years

N=5674, Median follow up 2.6 years

Finerenone – FIDELITY

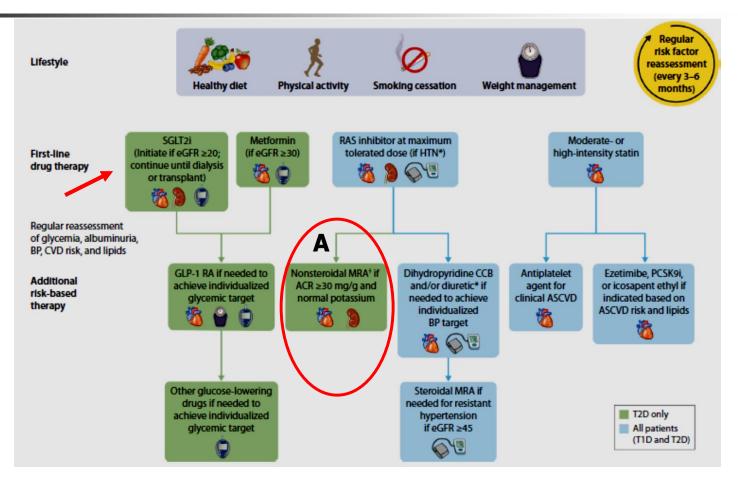
32% reduction in **UACR** (ratio of LS mean change from baseline 0.68; 95% CI 0.66-0.70)¹

Finerenone is indicated for the treatment of CKD (with albuminuria) associated with T2D in adults²

*First HHF defined as first event after randomisation; #ESKD or an eGFR <15 ml/min/1.73 m²; events were classified as renal death if: (1) the patient died; (2) KRT had not been initiated despite being clinically indicated; and (3) there was no other likely cause of death; ‡analysis for p-value not prespecified.

HbA1c, glycated haemoglobin; HHF, hospitalisation for heart failure; KRT, kidney replacement therapy; LS, least-squares

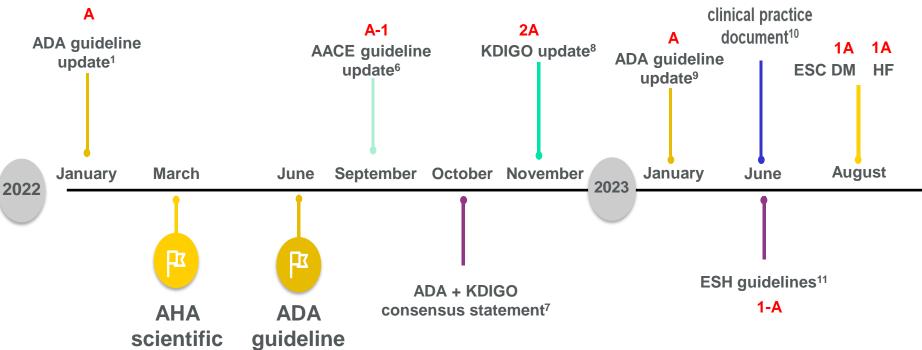
1. Agarwal R. et al. Eur Heart J 2022:43:474-484: 2. Baver AG, KERENDIA[®] (finerenone) Summary of Product Characteristics, 2023.


https://www.ema.europa.eu/documents/product-information/kerendia-epar-product-information_en.pdf [accessed 23 Mar 2023]

37

T

Consensus ADA, KDIGO


de Boer et al. Kidney Int. 2022;102:974-989.

ERBP ERA

Update of guidelines

Recommendation of Finerenone

AACE, American Beart Association; KDIGO, Kidney Disease: Improving Global Outcomes

American Diabetes Association. *Diabetes Care* 2022;45(Suppl 1); 2. Joseph JJ, *et al. Circulation* 2022;145:e722–e759; 3. Kidney Disease: Improving Global Outcome (KDIGO) 2022 Clinical Practice Guideline for Diabetes Management in Chronic Kidney Disease – Public Review Draft; March 2022; 4. American Diabetes Association. *Diabetes Care* 2022;45(Suppl 1):S144–S174 (Addendum) 5. American Diabetes Association. Diabetes Care 2022;45(Suppl 1):S175–S184 (addendum);
 Blonde L *et al. Endo Practice* 2022;28:923–1049; 7. de Boer IH, *et al. Diabetes Care* 2022;45:3075–3090; 8. Kidney Disease: Improving Global Outcomes. *Kidney Int* 2022;102:S1–S128; 9. American Diabetes Association. *Diabetes Care* 2023;46(Suppl 1):S191–S202; 10. Sarafidis PA et al. Clin Kidney J 2023; doi:10.1093/ckj/sfad139; 11. Mancia G et al. J Hypertens 2023; doi:10.1097/HJH.00000000003480

Key points 4

Finerenone is a selective nonsteroidal MRA that has been shown to provide CV and kidney benefits in patients with CKD and T2D^{1,2}

Finerenone slows CKD progression and reduces CV risk in a broad range of patients with CKD and T2D¹

Finerenone reduces UACR by >30% and has cardiorenal benefits in patients across the spectrum of CKD severity^{4–6} Major clinical guidelines recommend finerenone as a therapeutic option to reduce CKD progression and CV events in people with CKD and T2D^{3,4}

1. Fox CS, et al. Lancet 2013;381:532–533; 2. Matsushita K, et al. Lancet 2013;375:2073–2081; 3. Mernagh P, et al. ERA 2022; abstract MO375;

4. Agarwal R, et al. Eur Heart J 2022;43:474–484; 5. Ruilope LM, et al. Nephrol Dial Transplant 2023;38:372–383; 6. Pitt B, et al. N Engl J Med 2021;385:2252–2263

Case with T2D and CKD

Maria*

• - -	
+	
:=	

- 67-year-old female
- T2D for 6 years
- Newly diagnosed CKD
- HbA1c 7.8%
- Blood pressure 137/84 mmHg
- eGFR 54 ml/min/1.73 m²
- UACR 380 mg/g
- Serum [K⁺] 4.3 mmol/l
- Glycaemic control including SGLT-2i
- Anti-hypertensive treatment including maximum tolerated dose of RASi

Albuminuria categories (mg albumin/g creatinine)¹

A1 Normal to mildly increased	A2 Moderately increased	A3 Severely increased
<30 mg/g <3 mg/mmol	30–300 mg/g (3–30 mg/mmol)	>300 mg/g (>30 mg/mmol)

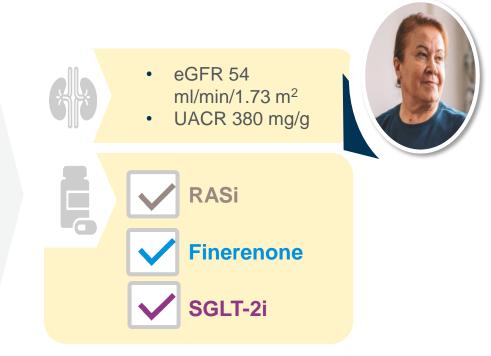
What would be the expected benefits of adding finerenone to Maria's treatment regimen?

GFR categories ml/min/1.73 m²

*Fictitious patient case

GFR, glomerular filtration rate

1. Kidney Disease: Improving Global Outcomes (KDIGO). Kidney Int 2022;102:S1–S128



Three pilars of EBT and GDMT

Proposed pillar approach¹

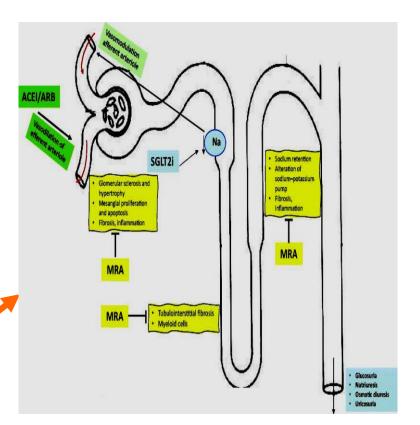
Maximum tolerated doses of RASi with an SGLT-2i and finerenone should provide maximal benefit to slow CKD progression and reduce CV outcomes[#]

*Patients with diagnosed HFrEF and NYHA II-IV were excluded from the finerenone phase III clinical studies (see section 5.1 of Kerendia (finerenone) SmPC);² #the CV outcomes referred to pertain to HHF risk in particular NYHA, New York Heart Association 1. Blazek O & Bakris GL *Am Heart J Plus* 2022;19:100187; 2. Bayer AG. KERENDIA[®] (finerenone) Summary of Product Characteristics. 2023. <u>https://www.ema.europa.eu/documents/product-information/kerendia-epar-product-information_en.pdf</u> [accessed 23 March 2023]

Finerenone and SGLT2i – FIDELITY

	n/N (%)		n events per 100 PY		
Endpoint	Finerenone	Placebo	Finerenone	Placebo	Hazard ratio (95% CI) P _{interac}
Composite CV outcome					
Overall	825/6519 (12.7)	939/6507 (14.4)	4.34	5.01	0.86 (0.78–0.95)
SGLT-2i at baseline	39/438 (8·9)	52/439 (11.8)	2.95	4.08	0.67 (0.42–1.07) 0.46
No SGLT-2i at baseline	786/6081 (12·9)	887/6068 (14.6)	4.44	5.08	0.87 (0.79–0.96)
Kidney composite outcome					
Overall	360/6519 (5.5)	465/6507 (7.1)	1.96	2.55	0.77 (0.67–0.88)
SGLT-2i at baseline	9/438 (2·1)	17/439 (3·9)	0.2	1.37	0.42 (0.16–1.08) 0.29
No SGLT-2i at baseline	351/6081 (5·8)	448/6068 (7·4)	2.06	2.64	0.80 (0.69–0.92)
				,	25 0,50 1,00 2,00 Favours finerenone Favours placebo

CI, confidence interval; CKD, chronic kidney disease; PY, patient year; SGLT-2i, sodium-glucose cotransporter 2 inhibitor;


T2D, type 2 diabetes; UACR, urine albumin-to-creatine ratio

Rossing P, Anker SD, Filippatos G, et al. Finerenone in Patients With Chronic Kidney Disease and Type 2 Diabetes by Sodium-Glucose Cotransporter 2 Inhibitor Treatment: The FIDELITY Analysis [published online ahead of print, 2022 Aug 15]. Diabetes Care. 2022;dc220294. https://doi.org/10.2337/dc22-0294

Finerenone and SGLT2i – FIDELITY

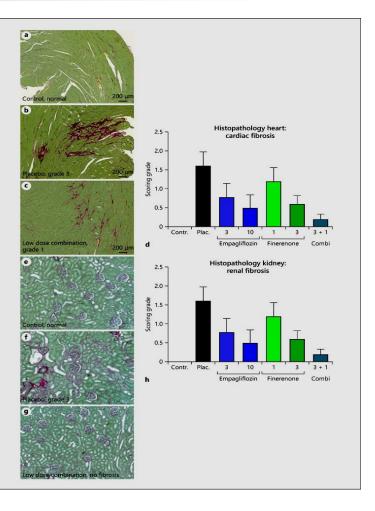
- FIDELITY among 13,026 patients with CKD in type 2 diabetes, 877 (6.7%) received SGLT2i at baseline and 1,113 (8.5%) received it during the study.
- Finerenone reduced the risk of cardiovascular and renal outcomes compared with placebo, and concomitant treatment with an SGLT2i at baseline or any time point of study did not modify observed results.
- The largely independent and complementary mechanisms of action of finerenone and SGLT2i are the basis for their effective and safe combined use.

Rossing P, Anker SD, Filippatos G, et al. Finerenone in Patients With Chronic Kidney Disease and Type 2 Diabetes by Sodium-Glucose Cotransporter 2 Inhibitor Treatment: The FIDELITY Analysis [published online ahead of print, 2022 Aug 15]. Diabetes Care. 2022;dc220294. https://doi.org/10.2337/dc22-0294 González-Juanatey et al. Ann Med. 2023 Dec;55(1):502-513. doi: 10.1080/07853890.2023.2171110.

SGLT-2i and finerenone in a mouse hypertension model (end organ damage)

Cardio-renal effects of mono and combination therapy with Finerenone and Empagliflozin in preclinical model of Hypertension induced end organ damage

AJN American Journal of Nephrology


1	Intervention	Outcome parameters		Change in Proteinuria	Blood Pressure (mm Hg)	Cardiac & Renal Histology
		lacebo	53%	100%	202 ±6.8	\bigcirc
	Finereno	ne 1mg	85×	-27%	170 ±9.0	Dose dependent Improvement in cardiac & renal histopathology parameters with maximum benefit with low dose
Hypertensive, proteinuric,	Finereno	ne 3mg	86%	-87%	164 ±4.7	
L-NAME treated, renin-transgenic (mRen2)27 rats.	Empeglifloz	in 3mg	71%	-38%	199 ±10.4	
	(mRen2)27 rats.	Empagliffori	10mg	62×	-64×	188 :8.7
	Finerenone 1mg + Empagidloz	in 3mg	93%	-86%	173 ±7.7	

Conclusion: Combination of nonsteroidal MR antagonism by finerenone and SGLT2 inhibition by empagliflozin confer CV protection in preclinical hypertension-induced cardiorenal disease indicating a strong potential for combined clinical use. Kolkhof P, Hartmann E, Freyberger A, Pavløvic M, Mathar I, Sandner P, Droebner K, Joseph A, Hüser J, Eitner F: Effects of Finerenone Combined with Empagililozini na Model of Hypertension-Induced End-Organ Damase.

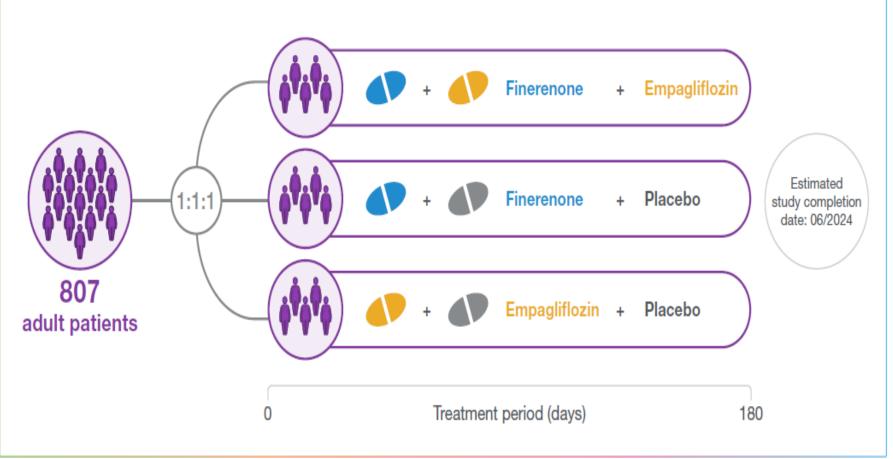
Damage. Am J Nephrol DOI: 10.1159/000516213

Visual Alestract by Askath Shingada@ashashohingada 👹

Kolkhof P, et al. Am J Nephrol 2021;52:642–652

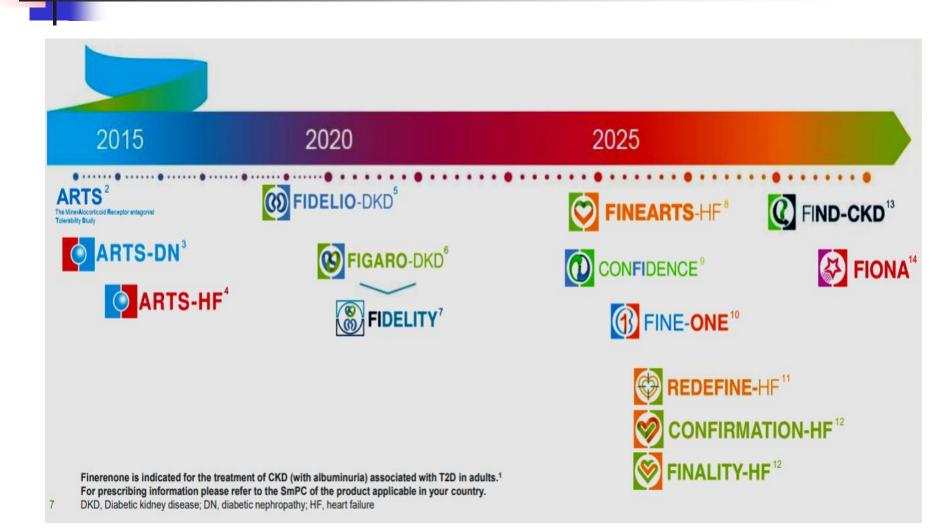
50

SGLT-2i και φινερενόνη σε υπερτασικό μοντελο αρουραίου


100

90 Cardio-renal effects of mono and combination therapy with AJN American Journal Finerenone and Empagliflozin in preclinical model of of Nephrology Hypertension induced end organ damage Proportion of survival, % 80 Outcome Intervention 7 8 parameters Survival Blood Pressure Change in Proteinuria Cardiac & Renal Histology 70 53× 100_{\times} 202:68 Placebo Dose dependent 85% -27% 170 +9.0 Finerenone 1mg Improvement in Hypertensive, cardiac & renal Combination 3 + 1 86% -87% 164 +4.7 histopathology proteinuric. Finerenone 3mg 60 parameters with L-NAME treated, Finerenone 1 ma/ka 71× -38% 199 +10.4 maximum benefit Empegliflozin 3mg renin-transgenic with low dose (mRen2)27 rats. Finerenone 3 ma/ka combination 62× -64% 188 +87 Empaglificzin 10mg therapy Empagliflozin 3 mg/kg 50 93% -86% Finerenone 1mg + Empagliflorin 3mg 173 ±7.7 - Empagliflozin 10 mg/kg Kolkhof P, Hartmann E, Freyberger A, Pavlovic M, Mathar I, Sandner P, Droebner K, Joseph A, Hüser J, Eitner F: Effects of Finerenone Combined with Empagiiflozimin a Model of Hypertension-Induced End-Organ Placebo Damage. Am J Nephrol DOI: 10.1159/000516213 0 Visual Alestract by Aakath Shingada@aahashohingada 🔰 10 20 30 40 Time, days

Kolkhof P, et al. Am J Nephrol 2021;52:642-652



Randomization and treatment

Studies on CV and renal outcomes are under way

Prerequisite for Finerenone treatment are serum K+ kai eGFR Image: Construction of the serum K+ kai eGFR If serum [K⁺] ≤4.8 mmol/l* Image: Construction of the serum K+ kai eGFR

Maria's serum [K+]: 4.3 mmol/l

If eGFR \geq 25 ml/min/1.73 m²

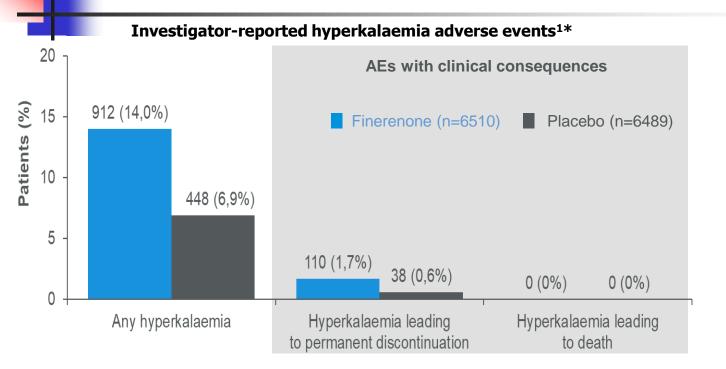
Maria's eGFR: 54 ml/min/1.73 m²

Maria can initiate treatment with finerenone Treatment can be **maintained** in patients with an **eGFR ≥15 ml/min/1.73 m^{2#}**

20 mg

od

Target and maximum recommended dose:


(and starting dose if

eGFR \geq 60 ml/min/1.73 m²)

*If serum [K⁺] is >4.8–5.0, initiation of finerenone may be considered with additional serum potassium monitoring within the first 4 weeks based on patient characteristics and serum [K⁺]; #if eGFR falls below 15 ml/min/1.73 m², treatment should be discontinued Bayer AG. KERENDIA[®] (finerenone) Summary of Product Characteristics. 2023. <u>https://www.ema.europa.eu/documents/product-information_en.pdf</u> [accessed 1 Mar 2023]

Hyperkalemia – FIDELITY

Max difference in mean serum [K⁺] between finerenone and placebo¹

Hyperkalaemia risk factors:² High baseline [K⁺], lower eGFR, higher UACR, ßblocker use

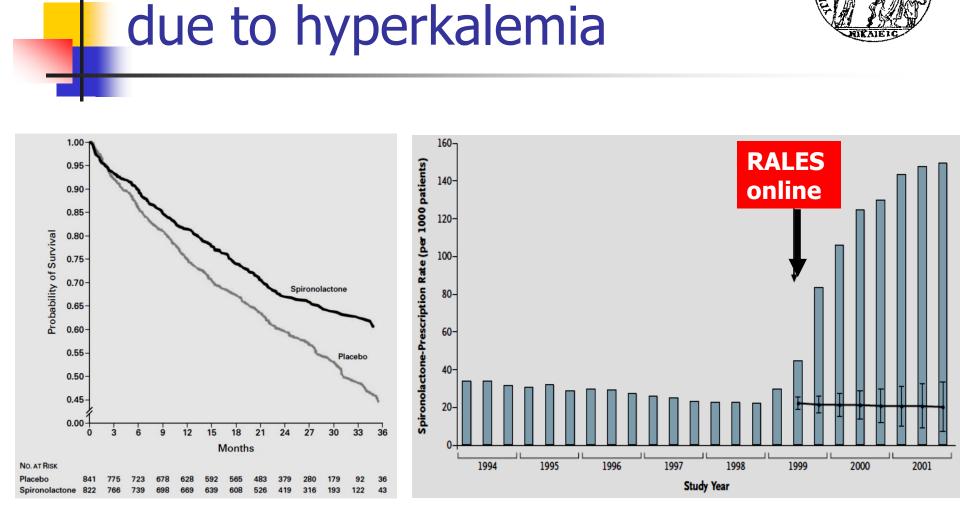
*Investigator-reported AEs using the MedDRA preferred terms 'hyperkalaemia' and 'blood potassium increased'

AE, adverse events; MedDRA, Medical Dictionary for Regulatory Activities

1. Agarwal R, et al. Eur Heart J 2022;43:474-484; 2. Agarwal R, et al. J Am Soc Nephrol 2022;33:225-237;

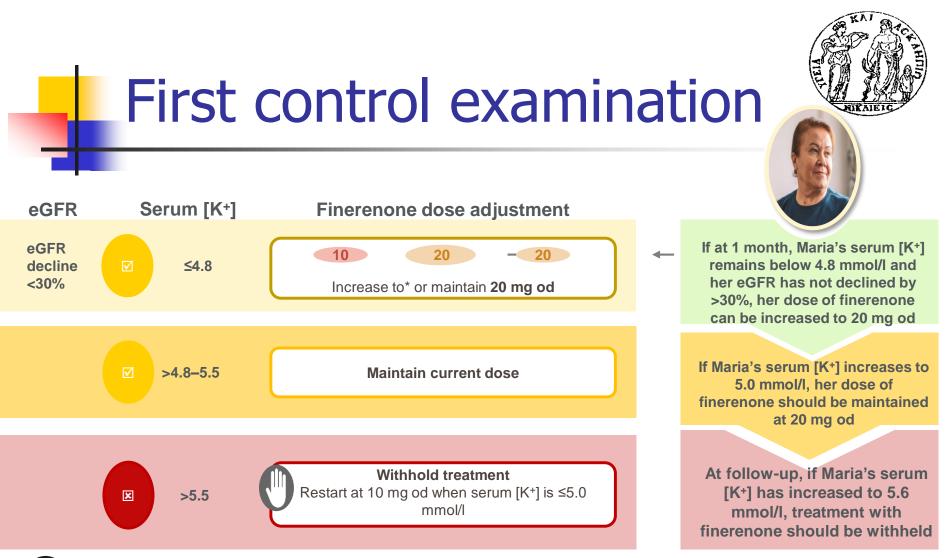
3. Bakris GL, et al. N Engl J Med 2020;383:2219-2229; Supplementary appendix

K+ Finerenone + SGLT2i – FIDELITY


Table 2—Overall safety and selected treatment-emergent AEs of interest in patients receiving or not receiving an SGLT2i at baseline

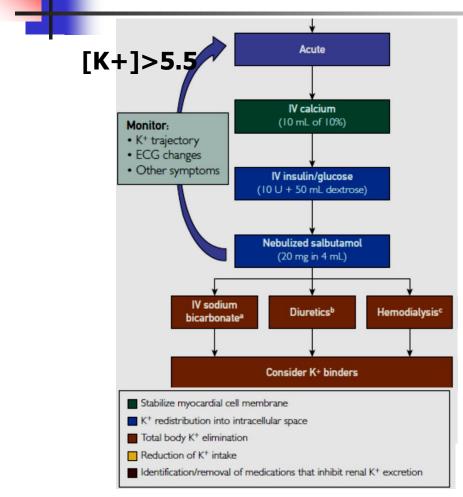
	SGLT2i at	baseline	No SGLT2i at baseline		
Investigator-reported, treatment-emergent AE	Finerenone $(n = 438)$	Placebo $(n = 439)$	Finerenone (<i>n</i> = 6,072)	Placebo $(n = 6,050)$	
Any AE Leading to discontinuation	398 (90.9) 18 (4.1)	384 (87.5) 23 (5.2)	5,204 (85.7) 396 (6.5)	5,223 (86.3) 328 (5.4)	
Any serious AE Leading to discontinuation	146 (33.3) 7 (1.6)	141 (32.1) 8 (1.8)	1,914 <mark>(</mark> 31.5) 138 (2.3)	2,045 (33.8) 146 (2.4)	
Any AE resulting in death	2 (0.5)	9 (2.1)	108 (1.8)	142 (2.3)	
Hyperkalemia-related AEs Any AE Leading to discontinuation Leading to hospitalization	45 (10.3) 5 (1.1) 1 (0.8)	12 (2.7) 3 (0.7) 0	867 (14.3) 105 (1.7) 39 (1.4)	436 (7.2) 35 (0.6) 8 (0.3)	
Acute kidney injury Worsening renal function leading to discontinuation	5 (1.1) 2 (0.5)	15 (3.4) 2 (0.5)	215 (3.5) 50 (0.8)	219 (3.6) 40 (0.7)	
Hypertension	15 (3.4)	30 (6.8)	404 (6.7)	551 (9.1)	
Hypotension	21 (4.8)	14 (3.2)	261 (4.3)	163 (2.7)	
Hypoglycemia	17 (3.9)	19 (4.3)	323 (5.3)	356 (5.9)	
Central laboratory assessments Serum potassium >5.5 mmol/L Serum potassium >6.0 mmol/L	34 (7.9) 4 (0.9)	13 (3.0) 3 (0.7)	1,041 (17.4) 207 (3.4)	457 (7.7) 77 (1.3)	

Data are n (%). AE, adverse event; SGL12I, sodium–glucose cotransporter 2 inhibitor.


Rossing et al. Finerenone in Patients With Chronic Kidney Disease and Type 2 Diabetes by Sodium-Glucose Cotransporter 2 Inhibitor Treatment: The FIDELITY Analysis. Diabetes Care. 2022;45:2991-2998.

RALES and hospitalization

Pitt B, et al; for Randomized Aldactone Evaluation Study Investigators. N Engl J Med. 1999;341(10):709-717. Juurlink DN, et al. N Engl J Med. 2004;351(6):543-551.



Serum [K⁺] and eGFR should be remeasured 4 weeks after initiation or after restarting finerenone treatment, or after an increase in dose[#]

periodically and as needed based on patient characteristics and serum [K⁺] Bayer AG. KERENDIA[®] (finerenone) Summary of Product Characteristics. 2023. <u>https://www.ema.europa.eu/documents/product-information_en.pdf</u> <u>information/kerendia-epar-product-information_en.pdf</u> [accessed 1 Mar 2023]

Management of hyperkalemia

- [K+]>5.0 Review diet (and kidney function)
- We treat, if needed, with
 - Loop diuretics, thiazides,
 - Bicarbonate
- Avoidance of drugs that reduce potassium excretion (eg NSAIDs, amiloride)
- Decrease (or probably stop) RAASi in mild hyperkalemia [K+]>5.0mEq/L and stop at [K+]>5.5mEq/L.
- Administration of K+ ion exchangers per os. Target [K+]<5.0mEq/L and
- restart treatment with RAASi.

Murphy D, Banerjee D. Hyperkalaemia in Heart Failure: Consequences for Outcome and Sequencing of Therapy. Curr Heart Fail Rep. 2022;19:191-199.

Guidelines KDIGO

K⁺ ≤4.8 mmol/l

- Initiate finerenone
- 10 mg daily if eGFR 25-59 ml/min per 1.73 m²
- 20 mg daily if eGFR ≥60 ml/min per 1.73 m²
- Monitor K⁺ at 1 month after initiation and then every 4 months
- Increase dose to 20 mg daily, if on 10 mg daily
- Restart 10 mg daily if previously held for hyperkalemia and K⁺ now ≤5.0 mmol/I

K⁺ 4.9–5.5 mmol/l

Continue finerenone 10 mg or 20 mg
 Monitor K⁺ every 4 months

K⁺ >5.5 mmol/l

- Hold finerenone
- Consider adjustments to diet or concomitant medications to mitigate hyperkalemia
- Recheck K⁺
- Consider reinitiation if/when K⁺ ≤5.0 mmol/l

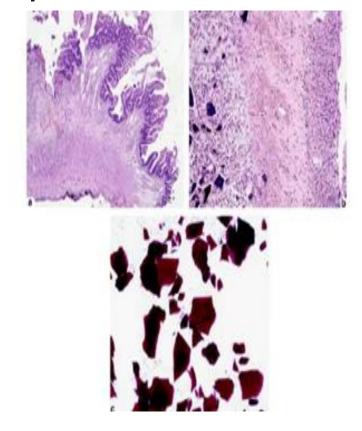
Rossing et al. Executive summary of the KDIGO 2022 Kidney Int. 2022;102:990-999.

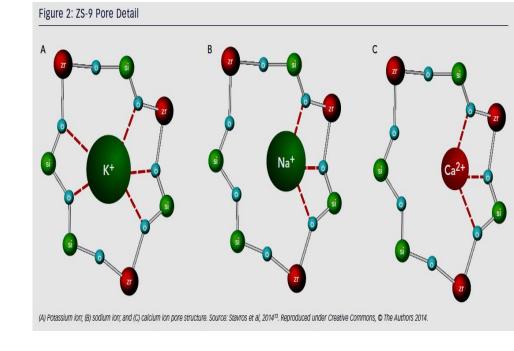
Bowel K+ exchangers

SPS

Patiromer

SZC


Table 2: Comparison of Therapies for Intermittent Hyperkalaemia


Property	Sodium polystyrene sulfonate	Patiromer	ZS-9
Chemical properties	Cation-exchange polymer resin	Non-absorbed organic resin and sorbitol complex; preferentially binds K+ in the colon	Inorganic crystalline polymer; enables cation exchange
Sorbitol content	20 g in each 15 g	2 g in each 4.2 g	None
Site of action	Colon	Colon	Entire gastrointestina tract
Means of administration	Daily; oral suspension or enema	Twice daily; oral suspension in water with meals	Three times daily (acute); daily (long-term); oral suspension or table
Time to onset of action	12 h	7 h	1 h

Palmer et al. Clinical Management of Hyperkalemia. Mayo Clin Proc. 2021;96:744-762.

Bowel K+ exchangers

Palmer et al. Clinical Management of Hyperkalemia. Mayo Clin Proc. 2021;96:744-762.

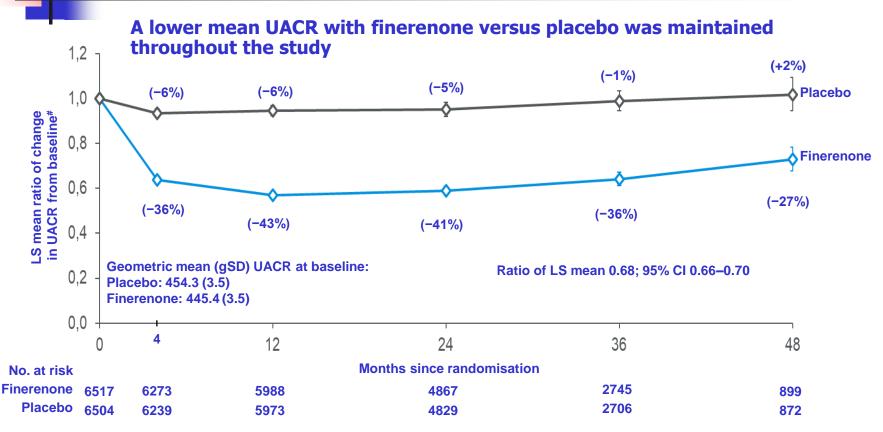
4 months later

Maria*

- 67-year-old female
 T2D and CKD
- RASi
- Finerenone#
- SGLT-2i[#]
- HbA1c 7.8%
- Blood pressure 135/83 mmHg
- eGFR 53 ml/min/1.73 m²
- UACR 262 mg/g
 - Reduced from 380 mg/g at the start of treatment

(mg albumin/g creatinine)1A1A2A3

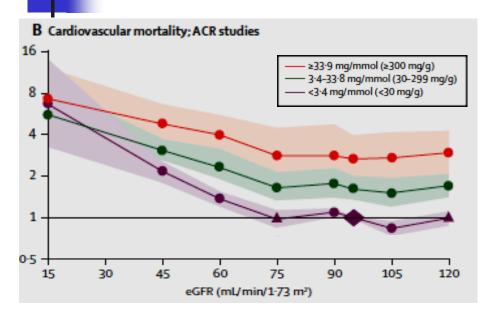
Albuminuria categories


Normal to mildly increased	AZ Moderately increased	AS Severely increased
<30 mg/g <3 mg/mmol	30–300 mg/g (3–30 mg/mmol)	> 300 mg/g (>30 mg/mmol)
		31%

What does this mean for Maria's prognosis?

GFR categories (ml/min/1.73 m²)

Influence of Finerenone on albuminuria



Data in parentheses are mean changes from baseline. *Full analysis set. Mixed model with factors treatment group, region, eGFR category at screening, type of albuminuria at screening, CV disease history, time, treatment*time, study, study*treatment, log-transformed baseline value nested within type of albuminuria at screening and log-transformed baseline value*time as covariate. Separate unstructured covariance patterns are estimated for each treatment group; #data are LS mean ± SD gSD, geometric standard deviation Agarwal R, *et al. Eur Heart J* 2022;43:474–484

CKD as cardiovascular risk factor

Matsushita K et al. Association of estimated glomerular filtration rate and albuminuria with allcause and cardiovascular mortality in general population cohorts: a collaborative meta-analysis. Lancet. 2010.

Gansevoort RT et al. Chronic kidney disease and cardiovascular risk: epidemiology, mechanisms, and prevention. Lancet.2013

				Albuminuria categories Description and range		
Progression of CKD by GFR and Albuminuria Categories			A1	A2	A3	
			Normal to mildly increased	Moderately increased	Severely increased	
				<30 mg/g <3 mg/mmol	30-299 mg/g 3-29 mg/mol	≥300 mg/g ≥30 mg/mmol
	G1	Normal to high	≥90			
73m²) e	G2	Mildly decreased	60-90			
GFR categories (ml/min/1.73m ²) Description and range	G3a	Mildly to moderately decreased	45-59			
tegories (scription	G3b	Moderately to severely decreased	30 - 44			
GFR ca De	G4	Severely decreased	15-29			
	G5	Kidney failure	15			

Kidney Disease: Improving Global Outcomes (KDIGO) CKD Work Group. Chapter 1: definition and classification of CKD. Kidney Int Suppl (2011). 2013;3:19-62.

Key points 5

- Guidelines-recommended treatment with finerenone for patients with T2D and DKD is independent from the use of SGLT2i.
- Recommended target dosis 20mg od.
- Finerenone-induced hyperkaliemia is moderate and not so frequent as in steroidal MRA.
- A rigorous K+ control according to guidelines is essential and effektive to prevent complicated hyperkalemia.
- Chronic treatment with bowel potassium binders may be needed for a really GDMT.

UACR is an important marker of kidney damage; in patients with CKD, increasing UACR is associated with an increased risk of CV and kidney outcomes^{1,2}

Conclusion

Early detection and treatment of CKD improve outcomes for patients and reduce healthcare costs³

Nephrologists play a key role in advocating for early UACR screening! Finerenone reduces UACR by >30% and has cardiorenal benefits in patients across the spectrum of CKD severity^{4–6}

Its positive effects for DKD are independent from other treatments

1. Fox CS, et al. Lancet 2013;381:532–533; 2. Matsushita K, et al. Lancet 2013;375:2073–2081; 3. Mernagh P, et al. ERA 2022; abstract MO375;

4. Agarwal R, et al. Eur Heart J 2022;43:474–484; 5. Ruilope LM, et al. Nephrol Dial Transplant 2023;38:372–383; 6. Pitt B, et al. N Engl J Med 2021;385:2252–2263

Ευχαριστούμε για την συμμετοχή σας !

Σκανάρετε εδώ για να αξιολογήσετε την εκδήλωση :

Ευχαριστώ!

- Superior doctors prevent disease
- Mediocre doctors treat disease before it's evident
- Inferior doctors treat full blown disease

上医医未病之病 中医医将病之病 下医医已病之病

~ 黄帝:内経~

 Huang Dee Nai-Chan (2600 BC), first Chinese medical text