Mechanisms and experimental data of SGLT-2 inhibition

Theodoros Eleftheriadis Prof. of Nephrology Faculty of Medicine University of Thessaly

ORIGINAL ARTICLE

Dapagliflozin in Patients with Chronic Kidney Disease

DAPA-CKD population

Patients with or without DKD

and eGFR >25 to <75

ml/min/1.73 m² and UACR

≥200 mg/g to ≤5000 mg/g

Hiddo J.L. Heerspink, Ph.D., Bergur V. Stefánsson, M.D.,

Ricardo Correa-Rotter, M.D., Glenn M. Chertow, M Fan-Fan Hou, M.D., Johannes F.E. Mann, M.D., Jol Magnus Lindberg, M.Sc., Peter Rossing, M.D., C. Roberto D. Toto, M.D., Anna-Maria Langkilde, M.D., a for the DAPA-CKD Trial Committees and

N Engl J Med 2020;383:1436-46.

no. of participant 197/2152 122/1247 75/905 126/1443 71/709 110/1124 7/104 53/749 27/175 50/692 57/610	s/total no. 312/2152 191/1239 121/913 209/1436 103/716 174/1166 14/87 77/718 47/181 69/654			0.61 (0.51-0.72) 0.64 (0.51-0.80) 0.58 (0.43-0.77) 0.57 (0.46-0.72) 0.65 (0.48-0.88) 0.62 (0.49-0.79) 0.33 (0.13-0.81) 0.66 (0.46-0.93) 0.54 (0.33 0.85)
197/2152 122/1247 75/905 126/1443 71/709 110/1124 7/104 53/749 27/175 50/692 57/610	312/2152 191/1239 121/913 209/1436 103/716 1/4/1166 14/87 77/718 47/181 69/654			0.61 (0.51-0.72) 0.64 (0.51-0.80) 0.58 (0.43-0.77) 0.57 (0.46-0.72) 0.65 (0.48-0.88) 0.62 (0.49-0.79) 0.33 (0.13-0.81) 0.66 (0.46-0.93) 0.54 (0.33-0.86)
122/1247 75/905 126/1443 71/709 110/1124 7/104 53/749 27/175 50/692 57/610	191/1239 121/913 209/1436 103/716 174/1166 14/87 77/718 47/181			0.64 (0.51-0.80) 0.58 (0.43-0.77) 0.57 (0.46-0.72) 0.65 (0.48-0.88) 0.62 (0.49-0.79) 0.33 (0.13-0.81) 0.66 (0.46-0.93) 0.54 (0.33-0.86)
122/1247 75/905 126/1443 71/709 110/1124 7/104 53/749 27/175 50/692 57/610	191/1239 121/913 209/1436 103/716 174/1166 14/87 77/718 47/181 69/654			0.64 (0.51-0.80) 0.58 (0.43-0.77) 0.57 (0.46-0.72) 0.65 (0.48-0.88) 0.62 (0.49-0.79) 0.33 (0.13-0.81) 0.66 (0.46-0.93) 0.54 (0.33-0.86)
75/905 126/1443 71/709 110/1124 7/104 53/749 27/175 50/692 57/610	121/913 209/1436 103/716 174/1166 14/87 77/718 47/181 69/654	. <u> </u>		0.58 (0.43-0.77) 0.57 (0.46-0.72) 0.65 (0.48-0.88) 0.62 (0.49-0.79) 0.33 (0.13-0.81) 0.66 (0.46-0.93) 0.64 (0.33-0.86)
126/1443 71/709 110/1124 7/104 53/749 27/175 50/692 57/610	209/1436 103/716 174/1166 14/87 77/718 47/181 69/654	·		0.57 (0.46-0.72) 0.65 (0.48-0.88) 0.62 (0.49-0.79) 0.33 (0.13-0.81) 0.66 (0.46-0.93)
126/1443 71/709 110/1124 7/104 53/749 27/175 50/692 57/610	209/1436 103/716 174/1166 14/87 77/718 47/181 69/654	·		0.57 (0.46-0.72) 0.65 (0.48-0.88) 0.62 (0.49-0.79) 0.33 (0.13-0.81) 0.66 (0.46-0.93)
71/709 110/1124 7/104 53/749 27/175 50/692 57/610	103/716 174/1166 14/87 77/718 47/181 69/654	Ļ		0.65 (0.48–0.88) 0.62 (0.49–0.79) 0.33 (0.13–0.81) 0.66 (0.46–0.93)
110/1124 7/104 53/749 27/175 50/692 57/610	174/1166 14/87 77/718 47/181 69/654	·		0.62 (0.49-0.79) 0.33 (0.13-0.81) 0.66 (0.46-0.93)
110/1124 7/104 53/749 27/175 50/692 57/610	174/1166 14/87 77/718 47/181 69/654	·		0.62 (0.49–0.79) 0.33 (0.13–0.81) 0.66 (0.46–0.93)
7/104 53/749 27/175 50/692 57/610	14/87 77/718 47/181 69/654	·		0.33 (0.13–0.81) 0.66 (0.46–0.93)
53/749 27/175 50/692 57/610	77/718 47/181 69/654			0.66 (0.46-0.93)
27/175 50/692 57/610	47/181			0 54 (0 22 0 96)
50/692 57/610	69/654		1	0.54 (0.55-0.86)
50/692 57/610	69/654			
57/610	00/000		⊢	0.70 (0.48-1.00)
	89/623		⊢_ ∎(0.60 (0.43-0.85)
35/401	69/412			0.51 (0.34-0.76)
55/449	85/463			0.61 (0.43-0.86)
			1	
152/1455	229/1451			0.64 (0.52-0.79)
45/697	83/701		⊢−− ∎−−−1	0.50 (0.35-0.72)
152/1272	217/1250		⊢ ∎→	0.63 (0.51-0.78)
45/880	95/902			0.49 (0.34-0.69)
			1	
44/1104	84/1121			0.54 (0.37-0.77)
153/1048	228/1031		⊢ ∎→1	0.62 (0.50-0.76)
			1	
46/793	96/749		·	0.44 (0.31-0.63)
151/1359	216/1403			0.68 (0.56-0.84)
		0.1	0.5 1.0	2.0
		Dapaglif	ozin Better	Placebo Better
	152/1272 45/880 44/1104 153/1048 46/793 151/1359	152/1272 217/1250 45/880 95/902 44/1104 84/1121 153/1048 228/1031 46/793 96/749 151/1359 216/1403	152/1272 217/1250 45/880 95/902 44/1104 84/1121 153/1048 228/1031 46/793 96/749 151/1359 216/1403 0.1 Dapaglif	152/1272 217/1250 45/880 95/902 44/1104 84/1121 153/1048 228/1031 46/793 96/749 151/1359 216/1403 0.1 0.5 1.0 Dapagliflozin Better

Kidney outcome									
Overall	142/2152	243/2152	3.3	5.8	⊢€⊣	0.56 (0.45, 0.68)		4.7 (3.0, 6.4)	
UACR ≤113.0 mg/mmol	21/1104	51/1121	0.9	2.3	⊢ ●−-	0.42 (0.25, 0.70)	0.59	2.6 (1.2, 4.1)	0.002
UACR >113.0 to ≤395.5 mg/mmol	71/881	130/883	4.1	7.7	⊢€⊣	0.52 (0.39, 0.69)		6.7 (3.7, 9.6)	
UACR >395.5 mg/g	50/167	62/148	16.7	27.7	⊢ •–-	0.62 (0.42, 0.90)		12.0 (1.4, 22.5)	

Waijer, Diabetologia, 2022

>300

All patients

438/1705

558/3305

323/1712

432/3304

0.67 (0.58-0.78)

0.72 (0.64-0.82)

1.0

0.5

Empagliflozin Better

1.5

Placebo Better

2.0

Evaluation of Glomerular Hemodynamic Function by Empagliflozin in Diabetic Mice Using In Vivo Imaging

Circulation. 2019;140:303-315

SGLT2i

- ↑ tubuloglomerular feedback
- \uparrow afferent arteriole tone
- ↓ intraglomerular pressure

RASi

 \downarrow efferent arteriole tone

 \downarrow intraglomerular pressure

call for papers

Vascular Signaling by Free Radicals Role of xanthine oxidoreductase and NAD(P)H oxidase in endothelial superoxide production in response to oscillatory shear stress

> Am J Physiol Regul Integr Comp Physiol 295: R1858–R1865, 2008. First published October 15, 2008; doi:10.1152/ajpregu.90650.2008.

NADPH oxidase contributes to renal damage and dysfunction in Dahl salt-sensitive hypertension

Am J Physiol Renal Physiol 296: F1239–F1244, 2009.First published January 14, 2009; doi:10.1152/ajprenal.90521.2008.

Renal tubulointerstitial fibrosis: common but never simple

http://www.kidney-international.org

© 2011 International Society of Nephrology

The definition, classification, and prognosis of chronic kidney disease: a KDIGO Controversies Conference report

Andrew S. Levey¹, Paul E. de Jong², Josef Coresh³, Meguid El Nahas⁴, Brad C. Astor³, Kunihiro Matsushita³, Ron T. Gansevoort², Bertram L. Kasiske⁵ and Kai-Uwe Eckardt⁶

Comp	osite	ranking fo	Albuminuria stages, description and range (mg/g)							
relati	ve risł	ks by GFF	A	\1	A2	A3				
an (k	iminuria	Optim high-i	nal and normal	High	Very high and nephrotic					
				<10	10–29	30–299	300 <i>-</i> 1999	≥2000		
	High an		>105							
	GI	optimal	90-104							
GFR	60	Mild	75–89							
stages, descrip- tion and range (ml/min per 1.73 m ²) G2 G3 G3a G3a G3b	62	IVIIIO	60-74							
	G3a	Mild- moderate	45-59							
	G3b	Moderate- severe	30-44				ter ter an ander			
	G4	Severe	15–29							
	G5	Kidney failure	<15							

puł

Albuminuria toxicity in renal proximal tubular epithelial cells

Eleftheriadis et al., Int J Mol Scie, 2023

MDPI

Article **Routes of Albumin Overload Toxicity in Renal Tubular Epithelial Cells**

Theodoros Eleftheriadis ^{*,†}[®], Georgios Pissas [†], Spyridon Golfinopoulos, Maria Efthymiadi, Christina Poulianiti, Maria Anna Polyzou Konsta, Vassilios Liakopoulos [®] and Ioannis Stefanidis

1.1

BSA

1.0

TUDCA

1.1

BSA 4-PBA 1.0

BSA TUDCA

Α

D

CC-9 relative level

Human RPTECs

Control

N-acetylcysteine (NAC) 3mg/mL

BSA

BSA NAC

1.0 1.0

NAC

BSA

1.7

BSA NAC

0

1

Control

1.6

BSA NAC

1

0

1.0

Control

1.2

NAC

BSA

BSA NAC

1.5

Glucose toxicity in renal proximal tubular epithelial cells

NEPHROLOGY - ORIGINAL PAPER

A unifying model of glucotoxicity in human renal proximal tubular epithelial cells and the effect of the SGLT2 inhibitor dapagliflozin

Theodoros Eleftheriadis¹ · Georgios Pissas¹ · Konstantina Tsogka¹ · Evdokia Nikolaou¹ · Vassilios Liakopoulos¹ · Ioannis Stefanidis¹

Article Dapagliflozin Prevents High-Glucose-Induced Cellular Senescence in Renal Tubular Epithelial Cells

B

Theodoros Eleftheriadis *,†⁽), Georgios Pissas [†], Georgios Filippidis, Maria Efthymiadi, Vassilios Liakopoulos ⁽) and Ioannis Stefanidis

High glucose Dapagliflozin

Dapagliflozin

+

α-SMA 43 kDa												
<mark>β-actin</mark> ^{45 kDa}	-	-	•	ف	-	-	-	ب	-	J	-	-
Normal Glucose	+	+			+	+			+	+		
High Glucose			+	+			+	+			+	+

+

+

+

+

+

Changes in kidney function follow living donor nephrectomy

Kidney International (2020) 98, 176-186

A prospective controlled study of metabolic and physiologic effects of kidney donation suggests that donors retain stable kidney function over the first nine years

Kidney International (2020) 98, 168-175

• 6 months after nephrectomy the GFR is stabilized at the 70% of its initial value

In case of decreased renal mass, the single nephron GFR increases upregulating glucose load per nephron. Thus, it is likely that the dapagliflozin protection against glucotoxicity is extended in CKD patients without diabetes mellitus.

