

Anemia in CKD

Kantartzi Konstantia

Ass. Prof. of Nephrology D.U.TH.

(a) EQ-5D-3L utility index with Hb level^b

(b) EQ-5D-3L VAS scores with Hb level^b

van Haalen et al. BMC Nephrology 2020

Worse renal survival

Increase in morbidity and mortality

Increased with anemia

Lamerato et al. BMC Nephrology 2022

"Based on 2019 US population.

ESA = erythropoiesis-stimulating agent; NDD-CKD = non-dialysis-dependent chronic kidney disease; USD = US dollars; VA = United States Department of Veterans Affairs.

J Manag Care Spec Pharm. 2021

Anemia in CKD

Category	GFR	Terms	Clinical Presentations
G1	≥ 90	Normal or high	Markers of kidney damage (nephrotic syndrome,
G2	60-89	Mildly decreased*	nephritic syndrome, tubular syndromes, urinary tract symptoms, asymptomatic urinalysis abnormalities, asymptomatic radiologic abnormalities, hypertension due to kidney disease)
G3a	45-59	Mildly to moderately decreased	Mild to severe complications: O Anemia Mineral and hone disorder
G3b	30-44	Moderately to severely decreased	 Elevated parathyroid hormone Cardiovascular disease
G4	15-29	Severely decreased	 Hypertension Lipid abnormalities Low serum albumin
G5	< 15	Kidney failure	 Includes all of the above in addition Uremia

In the absence of evidence of kidney damage, neither GFR category G1 nor G2 fulfill the criteria for CKD. Refer to a nephrologist and prepare for kidney replacement therapy when GFR <30 mL/min/1.73m².

The prevalence of anemia raises with the progression of CKD

Clinical Kidney Journal., 2017

Diagnosis and evaluation of anemia in CKD

Diagnosis of anemia

1.2.1: Diagnose anemia in adults and children > 15 years with CKD when the Hb concentration is <13.0 g/dl (<130 g/l) in males and <12.0 g/dl (<120 g/l) in females. (*Not Graded*)

Investigation of anemia

- 1.3: In patients with CKD and anemia (regardless of age and CKD stage), include the following tests in initial evaluation of the anemia (*Not Graded*):
 - Complete blood count (CBC), which should include Hb concentration, red cell indices, white blood cell count
 and differential, and platelet count
 - Absolute reticulocyte count
 - Serum ferritin level
 - Serum transferrin saturation (TSAT)
 - Serum vitamin B₁₂ and folate levels

Pathophysiology of anemia in CKD

- Progressive reduction of endogenous erythropoietin (EPO) levels has classically been considered to play a preeminent role
- Absolute iron deficiency due to blood losses or an impaired iron absorption
- Ineffective use of iron stores due to increased hepcidin levels
- Systemic inflammation due to CKD and associated comorbidities
- Reduced bone marrow response to EPO due to uremic toxins
- Reduced red cell life span
- Vitamin B12 or folic acid deficiencies

KDIGO Anemia Working Group. KDIGO clinical practice guideline for anemia in chronic kidney disease. *Kidney Int*. 2012

Erythropoietin (EPO), a glycoprotein hormone, is the master regulator of erythropoiesis

Fibroblast-like interstitial peritubular cells of the kidneys

In CKD:

- Decrease in the EPO production due to fibrosis
- Errors in EPO-sensing

Sato et al., Frontiers in Genetics, 2019

In CKD patients, EPO levels are inadequately low with respect to the degree of anemia

Fehr et al., Kidney International 2004

Hypoxia Inducible Factor 1

HIF-1

Iron is essential for adequate erythropoietic response to EPO

Kalantar-Zadeh et al., Advances in Chronic Kidney Disease 2009

Iron deficiency is common in CKD Depending on its cause, iron deficiency can be categorized as absolute or functional

Absolute Iron Deficiency

Refers to low total iron levels due to blood loss, lack of absorption from the GI tract, and depletion of iron stores in the body.

Contributing Factors

When the kidneys are damaged, blood may leak into urine (hematuria), resulting in a constant loss of RBCs and hemoglobin. Dialysis patients also lose a significant amount of blood due to the dialysis procedure

Depletion of Iron Stores

Iron reserves may be depleted faster than they are replenished if there is constant blood loss and/or lack of iron absorption from the gut

Lack of Absorption

Absorption of dietary iron from the gut may be impaired, or ingested food may not contain enough iron **Functional Iron Deficiency**

Does not stem from total lack of iron in the body; rather, the circulating supply of iron is low due to poor iron mobilization

Contributing Factors

Conditions such as chronic inflammation, result in hepcidin release and poor clearance of hepcidin by the kidneys. Hepcidin blocks release of iron from the body's stores

个Ferritin ↓TSAT Ferritin levels are normal, or elevated, but stored iron may be inaccessible. This may lead to a below-normal TSAT level and lower RBC production

ESA Treatment

ESA treatment, which stimulates rapid RBC production, quickly depletes the available pool of iron CKD correlates with impaired iron availability, due to uremic toxins, inflammatory cytokines, hepsidin, malnutrition, malabsorption or blood losses

Kalantar-Zadeh et al., Advances in Chronic Kidney Disease 2009

Anemia treatment in CKD

- First oral iron supplements introduced in 1830s
- The use of red blood cell transfusions along the 20th century

• The appearance of the first rhuEPO use in late 1980s followed by longacting ESAs

- The widespread use of intravenous iron supplements in recent years
- The use of Hypoxia Inducible Factor Prolyl Hydroxylase Inhibitors (HIF-PHIs) the last few years

	Diagnosis of iron deficiency	Treatment initiation	Hb target under treatment with ESAs	SF and TSAT objectives in patients under treatment	FE oral vs. IV
NICE (2015)	Test every 3 months (1–3 m in HD) - Use %HRC > 6%, only if blood processing within 6 h if not possible, use CHr < 29 pg - If not, use a combi-nation SF < 100 ng/mL and TSAT < 20%	Correct iron deficiency before ESA therapy. - Patient-centered: discuss risks benefits of treatment options. Take into account the person's choice. Avoid Hb < 10 g/dL.	Hb 10–12 g/dl	Avoid SF > 800 ng/mL To prevent this, review iron dose if SF > 500 ng/ml	 ND-Cite via anemia and iron l'anciency: - offer a 3 months mal of oral iron therapy If it fails, offer IV iron therapy. DD-CKD: Preference for IV iron - If IV iron, consider high dose, low frequency formulations for ND and DD-CKD patients.
KDIGO (2012)	SF \leq 100 ng/mL and TSAT \leq 20%.	A trial with IV iron if Hb increase or ESA dose reduction is desired and UE < 500 ng/mL and TSAT < 500% ND-CKD: When HI < 0 g/dL: Indiversalize on iron based of the sate of fall of Hb, pits and symptoms. DJ-CKD: When Hb 9-10 grat. Avoid Hb < 9 g/dl.	Hb ≤ 1.5.g.U 	Stop iron supplements if SF > 500 ng/mL	ND-CKD: Select route based on severity of ID, prior response, side effects, costs, A trial of iv iron, or a 1–3 month trial of oral iron therapy. - DD- CKD: Preference for IV iron
ERBP (2009)	SF < 100 ng/th and/TSAT <20% in Sc make. Sf ≤ 10 ng/mL and TSAT ≤ 0% if ESA treated	 Avoid Hb < 10 g/dL. If low risk patients or a benefit in QoL foreseen ESA could start at ↑ Hb (avoid Hb > 12 g/dL) In high risk patients with worsening heart disease, treatment initiation at Hb9-10 g/dL. 	Hb 10–12 g/dl - High risk patients with asymptomatic disease: target Hb around 10 g/dL	Avoid SF > 500 ng/ml and TSAT > 30%.	ND-CKD and mild-moderate anemia: Oral iron as first line therapy for > 3 months. ND-CKD and severe anemia or when oral iron ineffective: IV iron as first choice.

Erythropoiesis-Stimulating Agents (ESAs)

Macdougall and Ashenden., Advances in Chronic Kidney Disease, 2009

Erythropoiesis-Stimulating Agents (ESAs)

Not all ESAs are the same They have different pharmacokinetic and pharmacodynamic properties, such as different half-lives and EPO receptor affinity

Table 1: Comparison of various types of erythropoietin							
Parameter	EPO-alpha	EPO-beta	Darbepoetin alpha	CERA			
MW (Daltons)	30,000	30,000	37,000	60,000			
Polyethylene glycol conjugation	Absent	Absent	Absent	Present			
Glycosylation sites	3	3	5				
Routes of administration	SC, IV, IP	SC, IV, IP	SC, IV	SC, IV			
Half-life (SC admn; hours)	19	20	73	139			
Bioavailability after SC administration (%)	20	23-42	37	62			
Dose	50-150 IU/kg	20-80 IU/kg	0.45 mcg/kg	0.6-1.2 mcg/kg			
Dosing schedule	1-3 times/week	1-3 times/week	Once a week or once in 2 weeks	Once in 2 weeks to once a month			

First generation	
Epoetin alfa	Epogen®
	Eprex®
	Procrit [®]
Epoetin beta	Recormon [®]
Epoetin omega	Epomax®
- 18. IV 1877/A	Hemax®
Second generation	
Epoetin beta	NeoRecormon®
Darbepoetin alfa	Aranesp®
Third generation	
Epoetin delta	Dynepo®
Methoxy polyethylene glycol epoetin beta	Mircera®
Epoetin alfa	Binocrit®
(biosimilar)	Abseamed®
	Epoetin Alfa Hexal ⁴
Epoetin zeta	Retacrit TM
(biosimilar)	Silapo TM
Epoetin theta	Biopoin®
	Eporatio®

New search

Erythropoiesis-stimulating agents for anaemia in adults with chronic kidney disease: a network meta-analysis

Edmund YM Chung, Suetonia C Palmer, Valeria M Saglimbene, Jonathan C Craig, Marcello Tonelli, Giovanni FM Strippoli Authors' declarations of interest Version published: 13 February 2023 Version history

Sixty-two new studies (9237 participants) were included in this update, so the review now includes 117 studies with 25,237 participants. Most studies were at high or unclear risk of bias in most methodological domains. Overall, results remain similar in this update compared to our previous review in 2014.

Authors' conclusions

The comparative effects of different ESAs on blood transfusions, death (any cause and cardiovascular), major cardiovascular events, myocardial infarction, stroke, vascular access thrombosis, kidney failure, fatigue and breathlessness were uncertain.

Administration convenience, CKD phase, administration route, and costs

Target Hb concentration

At the very beginning, the rationale for their use was quite simple

Nephrology:		
NKF-DOQI	1997	Target Hb level of 11–12 g/dL
FDA	2007	Black box warning recommending maintenance of Hb levels within the range of 10–12 g/dL for anemic patients with CKD
ERBP	2010	Target Hb level of 11–12 g/dL in CKD patients, do not intentionally exceed 13 g/dL
FDA	2011	Removed target Hb range of 10–12 g/dL; recommended use of the lowest ESA dose to reduce the need for transfusions
KDIGO	2012	For CKD patients with Hb concentration \geq 10.0 g/dL, ESA therapy should not be initiated. Upper target limit of 11.5 g/dL. Individualization of therapy will be necessary because some patients may have improvements in QoL at Hb concentrations above 11.5 g/dL and will be prepared to accept the risks
NICE	2015	Target Hb range of 10–12 g/dL
Renal Association	2017	Target Hb range of 10–12 g/dL

The target Hb concentration during ESA therapy is still controversial

Therapeutic goals

Study	ESA	Target Hb	Clinical outcomes
"Normal Hematocrit Trial" 1998	Epoetin alfa	Hct: 42% vs 30%	Halted early, due to a higher number of deaths and acute myocial infarction in the group randomized to the ligher hematocrit group
CHOIR 2006	Epoetin alfa	13.5g/dl vs 11.3g/dl	Increased risk of a composite of death, myocardial infancion hospitalization for congestive heart of the and stroke, and no incremental improvement in the quality of life
CREATE 2006	Epoetin alfa	Early therapy 13-15g/dl vs 'salvage' 10.5-11.5g/dl	Increase the nectory of dialysis, more hypertensive epistes, improved QoL in 13- 15g/dl
TREAT 2009	Darbepoetin alfa	13g/dl vs placebo rescue (below 9g/dl)	Did not reduce the risk of either of the two primary composite of the mes (either death or a cardiovascular event leath or a renal event), and was associated with a increased risk of stroke

Target Hb concentration

- Correcting Hb levels if they are below 10 g/dL
- Avoiding exceeding Hb 13 g/dl
- The Hb target appears to be somewhere in between 10 and 12 g/dl
- It is advisable individualizing the Hb target relative to the patient's basal conditions, preferences and risks:
 - Cancer
 - Diabetes
 - Symptomatic limb arteriopathy
 - Stroke
 - Non-symptomatic ischemic heart disease

JL Babitt et al.: Optimal anemia management: a KDIGO conference report., Kidney International 2021

Iron Supplementation for Anemia in CKD

Macdougall and Ashenden., Advances in Chronic Kidney Disease, 2009

Evidence for clinical benefits of iron administration

	Patients with CKD not on dialysis	Patients on dialysis
Reduction of congestive heart failure	Limited ^{60,61}	Yes ⁶²
Reduced occurrence of myocardial infarction	Limited ⁶³	Yes ⁶²
Improved quality of life	Not studied	Limited ⁶⁴
Reduced occurrence of fatigue	Not studied	Limited ⁶⁴
Improved cognitive function	Not studied	Limited ⁶⁴
ESA dose reduction	Yes ⁶⁵	Yes ⁶⁵
Reduced blood transfusions	Not studied	Yes ⁶²

Several large studies have reported that correction of iron deficiency may be related with a reduction of congestive heart failure

Concerns about iron supplementation

IV Fe

- Enhanced oxidative stress
- Endothelial dysfunction
- Potential role in favoring infection
- IV iron administration has been associated with an increased risk of hypotension, headaches or hypersensitivity reactions

Oral Fe

- Gastrointestinal intolerance
- Constipation
- effect on gut microbiota
- Increases uremic toxins production ????
- Increases inflammation in CKD ??????

Iron types		Characteristic	Ferrous Sulfate	Ferrous Fumarate	Ferrous Gluconate	Ferric Citrate	Ferric Maltol	Sucrosomial Iron
		Side effect						
		Dyspepsia	++	++	++	+	+	+
		Constipation	+	+	+	+	+	+
	/ 1	Available over the counter	Yes	Yes	Yes	No	No	Yes
		Phosphate binder	No	No	No	Yes	No	No
		Approximate minimum annual cost, USD	\$10.80ª	\$237.60ª	\$37.60ª	\$8,294.40 ^b	\$7,200.00 ^b	\$720.00 ^b
Agent	Pros	Cons			✓ Se	everity o	f iron	
Iron dextran	Lowest cost, can give 1,000 mg in 1 dose (off label), low risk of 6H syndrom	High rate of hypersensitivity, requires test dose, requires 1.5 h of infusion and observation		es test dose, rvation	deficiency			
Ferric gluconate	Erric gluconate Low risk of severe hypersensitivity, low cost, low risk of 6H syndrome		Takes 4-8 doses to administer 1,000 mg, administered over 1 h, risk of hypotension		 Availability of venous access Response to prior 			
Iron sucroseLow risk of severe hypersensitivity, low cost, low risk of 6H syndromeTakes TakesFerumoxytolLow incidence of 6H syndrome, takes 2 doses to administer 1,000 mgHas costFerric carboxymaltoseHighest total US approved dose (1,500 mg in 2 doses), 1,000 mg in 1High hypo		Takes 3-5 doses to administer 1,000 mg		0 mg				
		2 Has black box warning cost	Has black box warning for hypersensitivity, higher cost		oral iron therapy			Ý
		Highest incidence of 6 hypophosphatemia, hig	Highest incidence of 6H syndrome/			 Side effects with 		

availability (?)

Hypophosphatemia (4%), higher cost, limited

In-center hemodialysis patients only; for iron

maintenance, not repletion; risk of hypotension

dose also US approved, low risk of

1,000 mg in 1 dose is US approved, low

Low risk of severe hypersensitivity, given

severe hypersensitivity

syndrome

risk of severe hypersensitivity

through dialysate, low risk of 6H

Ferric derisomaltose

Ferric pyrophosphate citrate

- prior oral or IV iron therapy
- ✓ Patient compliance and cost

KDIGO 2012

Iron guideline KDIGO

2.1.2: For adult CKD patients with anemia not on iron or ESA therapy we suggest a trial of IV iron (or in CKD ND patients alternatively a 1-3 month trial of oral iron therapy) if (2C):

- an increase in Hb concentration without starting ESA treatment is desired* and
- TSAT is \leq 30% and ferritin is \leq 500 ng/ml (\leq 500 µg/l)

2.1.3: For adult CKD patients on ESA therapy who are not receiving iron supplementation, we suggest a trial of IV iron (or in CKD ND patients alternatively a 1–3 month trial of oral iron therapy) if (2C):

- an increase in Hb concentration** or a decrease in ESA dose is desired*** and
- TSAT is \leq 30% and ferritin is \leq 500 ng/ml (\leq 500 µg/l)

Prolyl hydroxylase domain (PHD) inhibitors

- Prolyl hydroxylase domain (PHD) inhibitors are a new class of drugs for the treatment of anemia
- They differentiate from ESAs, since they do not directly activate the erythropoietin receptor, but rather stimulate the production of endogenous erythropoietin from the kidneys
- Induce the expression of genes related to iron transport
- They are administered orally

Forest plots for the efficacy of Hb response

Hb response

Quantifying heterogeneity / inconsistency: $tau^2 = 0$; tau = 0; $l^2 = 0\% [0.0\%; 70.8\%]$

Tests of heterogeneity (within designs) and inconsistency (between designs):

	Q	d.f.	p-value
Total	4.12	6	0.6603
Within designs	4.12	6	0.6603
Between designs	0.00	0	

Forest plots for the safety of the treatmentemergent adverse events

Any adverse event

Quantifying heterogeneity / inconsistency: tau² = 0.0003; tau = 0.0167; $I^2 = 21.8\% [0.0\%; 57.6\%]$

Tests of heterogeneity (within designs) and inconsistency (between designs):

	Q	d.f.	p-value
Total	17.91	14	0.2109
Within designs	17.91	14	0.2109
Between designs	0.00	0	

Any serious adverse event

Treatment	Treat	ments vs. ESA	s RR	95% CI	Р	SUCRA
Desidustat -			0.76	[0.41; 1.42]	0.39	0.81
Vadadustat			0.93	[0.87; 1.01]	0.07	0.77
Daprodustat		-	0.99	[0.91; 1.07]	0.78	0.55
Roxadustat			1.03	[0.97; 1.09]	0.36	0.35
Enarodustat	2		1.07	[0.52; 2.22]	0.85	0.43
Molidustat		-	- 1.34	[0.95; 1.89]	0.09	0.09
		1		10 10		0.49
	0.5	1	2			

Quantifying heterogeneity / inconsistency: tau² = 0.0009; tau = 0.0299; l² = 8.5% [0.0%; 45.6%]

Tests of heterogeneity (within designs) and inconsistency (between designs):

	Q	d.f.	p-value
Total	15.31	14	0.3574
Within designs	15.31	14	0.3574
Between designs	0.00	0	

Chen et al., Frontiers in Pharmacology 2023

RR

95% CI

0.68 [0.31; 1.52]

0.78 [0.66; 0.92]

0.98 [0.83; 1.16]

1.00 [0.46; 2.19]

1.15 [1.04; 1.27]

Forest plots for the safety of the treatment-emergent adverse events

Hyperkalemia

Chen et al., Frontiers in Pharmacology 2023

Cancer

Pleiotropic effects of PHDi

Activation of multiple genes regulating:

- Erythropoiesis
- Iron metabolism
- Angiogenesis
- Lipid and glucose metabolism
- Glycolysis
- Mitochondrial function
- Inflammation and immunity
- Cell growth and survival
- Vasodilation
- Cell migration

Anemia in CKD is a significant and frequent complication with multifactorial pathophysiology

- Anemia guidelines are old
- Does not include recent studies assessing the:
 - Efficacy and safety of IV iron
 - Different strategies of iron repletion
 - Current and upcoming erythropoiesis stimulating agents

Controversies in optimal anemia management: conclusions from a Kidney Disease: Improving Global Outcomes (KDIGO) Conference

Jodie L. Babitt¹, Michele F. Eisenga², Volker H. Haase^{3,4,5}, Abhijit V. Kshirsagar⁶, Adeera Levin⁷, Francesco Locatelli⁸, Jolanta Małyszko⁹, Dorine W. Swinkels¹⁰, Der-Cherng Tarng¹¹, Michael Cheung¹², Michel Jadoul¹³, Wolfgang C. Winkelmayer¹⁴ and Tilman B. Drüeke^{15,16}; for Conference Participants¹⁷

1. Revise anemia guideline

- 2. With optimal thresholds and targets
- 3. Individualized diagnosis and therapy
- 4. There are many areas where more research is needed

CONCLUSIONS

The conference participants agreed that sufficient data are available from new prospective RCTs and novel therapies to warrant convening a new workgroup to revise the KDIGO 2012 anemia guideline. There was also consensus that there are many areas where significantly more research is needed. In particular, the presently used parameters of Hb, serum TSAT, and serum ferritin are not reliable for estimating body iron stores or predicting response to therapy. Moreover, optimal thresholds, targets, and treatment strategies for anemia remain unknown, and have not been customized for specific disease states, age, sex, or within the context of other comorbidities. The need for increasing the complexity and specificity of treatment goals for patients is in keeping with trends to individualize therapy in all specialties. Important for future studies are developing and validating improved tools for determining optimal, individualized anemia correction targets, measuring patient-reported quality of life, and evaluating hard clinical outcomes. Although the class of HIF-PHI agents are predicted to benefit iron metabolism, clinical study data corroborating their predicted ferrokinetic properties in patients with CKD are not yet clearly established and are a high priority.

6H syndrome

- High Fibroblast Growth Factor 23
- 2. Hyperphosphaturia
- 3. Hypophosphatemia
- 4. Hypovitaminosis D
- 5. Hypocalcemia
- 6. Hyperparathyroidism secondary

Reported clinical manifestations of the 6H syndrome include:

- Osteomalacia
- Bone fractures
- Muscular weakness and
- Respiratory failure