Should the Serum Concentrations of Cl and TCO₂ Be Measured in Everyday Clinical Practice?

Nicolaos E. Madias, M.D.
Physician, Division of Nephrology
Department of Medicine
St. Elizabeth's Medical Center
Maurice S. Segal, M.D. Professor of Medicine
Tufts University School of Medicine
Boston, Massachusetts, USA

20th Hellenic Congress of Nephrology Athens, Greece May 3-6, 2018

Disclosures

None

The Case of K. M.

PCP: 58 ♂ with headaches and palpitations

PE: BP 158/100, HR 75 no ectopics, otherwise unremarkable

Labs: CBC nl; UA nl, BUN 10, cr 0.7; electrolytes Na⁺ 143, K⁺ 3.8, Cl⁻ 96, TCO₂ 38, AG 9;

TSH nl; ECG including rhythm strip nl

Plan: 1. HTN monitor for now

2. Electrolyte abnormalities, refer to SEMC Nephrology

F/U: 4 weeks

SEMC Nephrology: Final Diagnosis, Primary aldosteronism

Is More Better?

Routine Electrolyte Panel USA

Na⁺

K⁺

CI-

 TCO_2

AG

Routine Electrolyte Panel Greece

Na⁺

K+

Sx: 58 ♂ headaches, palpitations

Na⁺ 143

K⁺ 3.8

Cl⁻ 96

TCO₂ 38

AG 9

Dx: Primary aldosteronism

Clinical Utility of Serum Cl⁻ Concentration (1)

Changes in serum Cl⁻ denote:

- Disorders of water balance
- Disorders of acid-base balance

Clinical Utility of Serum Cl⁻ Concentration (2)

Changes in serum Cl⁻ denote:

- Disorders of water balance
 Also denoted by proportional changes in serum Na⁺
- Disorders of acid-base balance

Clinical Utility of Serum Cl⁻ Concentration (3)

Changes in serum Cl⁻ denote:

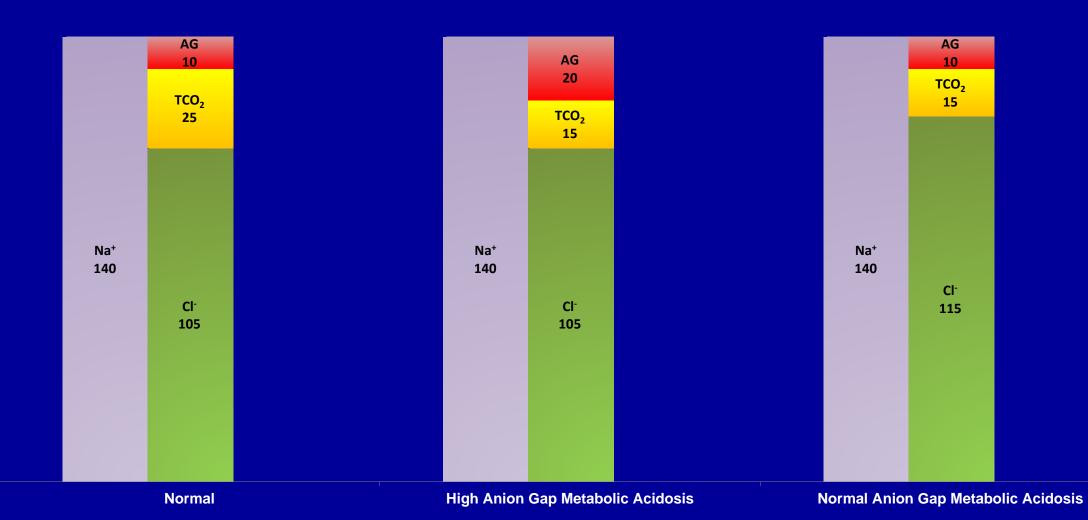
- Disorders of water balance
 Also denoted by proportional changes in serum Na⁺
- Disorders of acid-base balance

Hyperchloremic disorders (Na⁺ : Cl⁻ < 1.34)

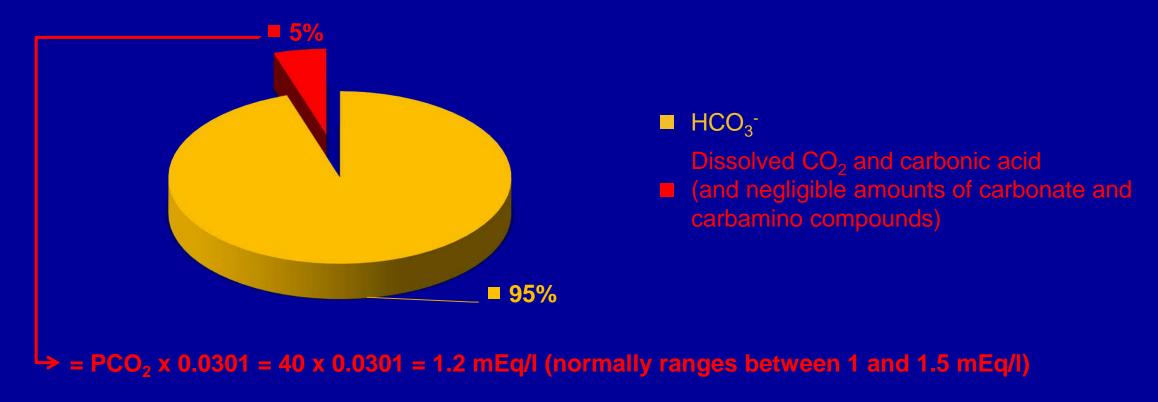
Hyperchloremic metabolic acidosis

Respiratory alkalosis

Hypochloremic disorders (Na⁺ : Cl⁻ > 1.34)


Metabolic alkalosis

Respiratory acidosis



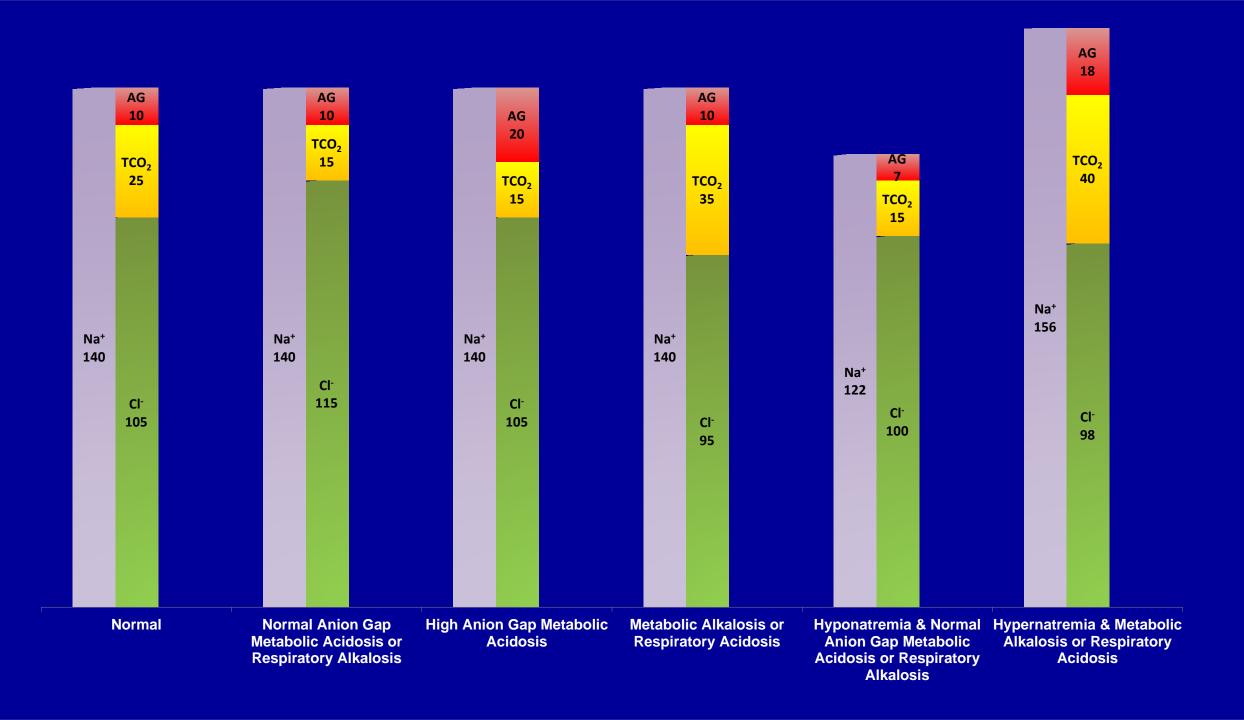
• Normochloremia occurs in high AG metabolic acidosis

Electrolyte Patterns in Metabolic Acidosis

Serum TCO₂ (a.k.a. bicarbonate or carbon dioxide)

- Measurement of serum TCO₂ is made by first releasing all CO₂ in the sample after addition of strong acid and then utilizing an electrometric or enzymatic method.
- Serum HCO₃⁻ is not measured directly but calculated from pH and PCO₂ using the Henderson-Hasselbalch equation.

Table 1. Secondary responses to alterations in acid-base status


Disorder	Primary Change	Secondary Response	Mean Slope of the Secondary Response
Respiratory acidosis	↑ Paco ₂	↑[HCO ₃ -]	
acute			$\Delta[HCO_3^-]/\Delta Paco_2 = 0.1 \text{ mEq/L per mmHg}$
chronic			$\Delta[HCO_3^-]/\Delta Paco_2 = 0.35 \text{ mEq/L per mmHg}$
Respiratory alkalosis	↓ Paco ₂	↓[HCO ₃ -]	
acute			$\Delta[HCO_3^-]/\Delta Paco_2 = 0.2 \text{ mEq/L per mmHg}$
chronic			$\Delta[HCO_3^-]/\Delta Paco_2 = 0.4 \text{ mEq/L per mmHg}$
Metabolic acidosis	↑[HCO³_]	↓ Paco ₂	$\Delta Paco_2/\Delta[HCO_3^-] = 1.2 \text{ mmHg per mEq/L}$
Metabolic alkalosis	↑[HCO ₃ ⁻]	↑ Paco ₂	$\Delta Paco_2/\Delta[HCO_3^-] = 0.7 \text{ mmHg per mEq/L}$

The term "acute" refers to a duration of minutes to several hours. The term "chronic" refers to a duration of several days or longer.

Clinical Utility of Serum TCO₂ Concentration (2)

Changes in serum TCO₂ denote disorders of acid-base balance

Low serum TCO₂
Metabolic acidosis
Respiratory alkalosis
High serum TCO₂
Metabolic alkalosis
Respiratory acidosis

Does Serum TCO₂ Supersede Serum Cl⁻?

```
Sx: 63 & T2DM, HTN

Na+ 140

K+ 5.2

Cl- 113

TCO<sub>2</sub> 17

AG 10

Dx: Type 4 RTA
```

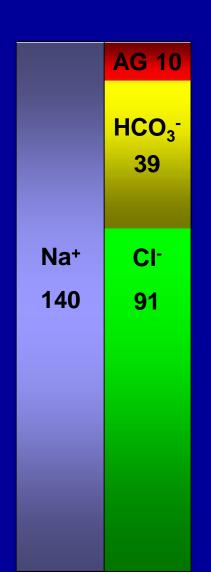
```
TCO<sub>2</sub> 17
AG 10
Dx: Type 4 RTA
Diabetic nephropathy

Sx: 54 & obesity, somnolence
Na<sup>+</sup> 143
```

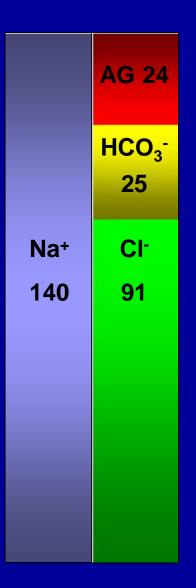
```
Na<sup>+</sup> 143
K<sup>+</sup> 4.2
Cl<sup>-</sup> 97
TCO<sub>2</sub> 36
AG 10
Dx: Obesity-hypoventilation syndrome
```

```
Sx: 32 ♀ anxiety, paresthesias
Na+ 140
K+ 4.6
Cl- 112
TCO<sub>2</sub> 17
AG 11
Dx: Panic disorder
Chronic hyperventilation
```

Sx: 67 우 I	HF.		
Na+	138		
K+	3.6		
Cl ⁻	92		
TCO ₂	34		
AG	12		
Dx: Furosemide-induced			
metabolic alkalosis			

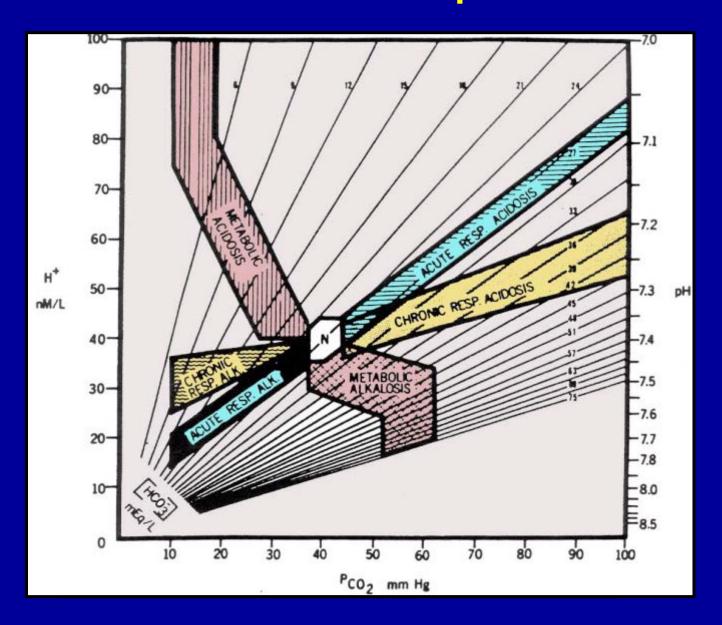

SX: 23 ¥	depression	on, insomnia		
Na+	141			
K+	3.8			
Cl-	106			
TCO_2	16			
AG	19			
Ox: Starvation ketosis				
Eating disorder				

Sx: 54 우	alcoholic, vomiting			
Na ⁺	140			
K+	3.7			
CI ⁻	91			
TCO ₂	25			
AG	24			
Dx: Metabolic alkalosis and				


alcoholic ketoacidosis

Normal **AG 10** HCO₃-25 Na⁺ CI-105 140

Metabolic Alkalosis


Metabolic Alkalosis and High Anion Gap Metabolic Acidosis

Clinical Utility of Serum TCO₂ Concentration (3)

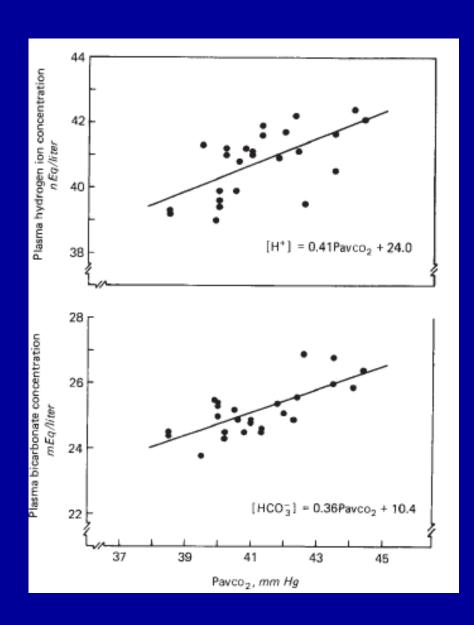
- Most acid-base disorders are first recognized by clinicians through abnormalities in serum TCO₂
- Assessment of TCO₂ is complemented by evaluation of the serum Cl⁻ and, thus, the serum AG

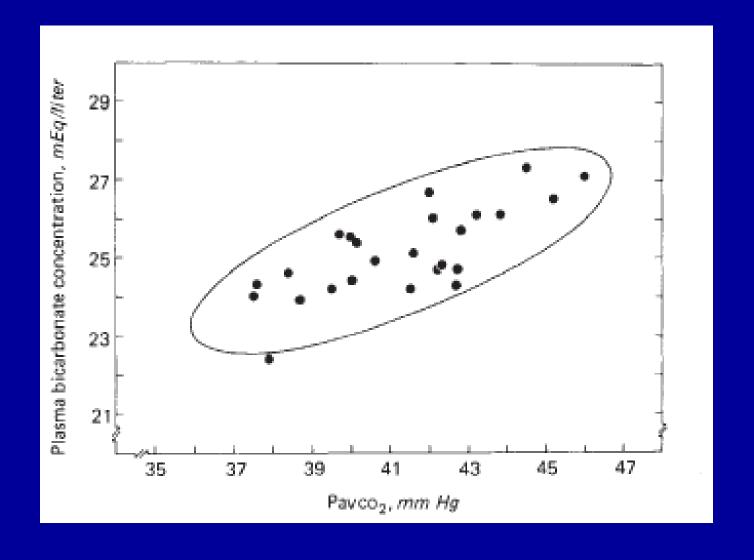
Acid-Base Template

How Common Are Acid-Base Disorders in the Outpatient Practice?

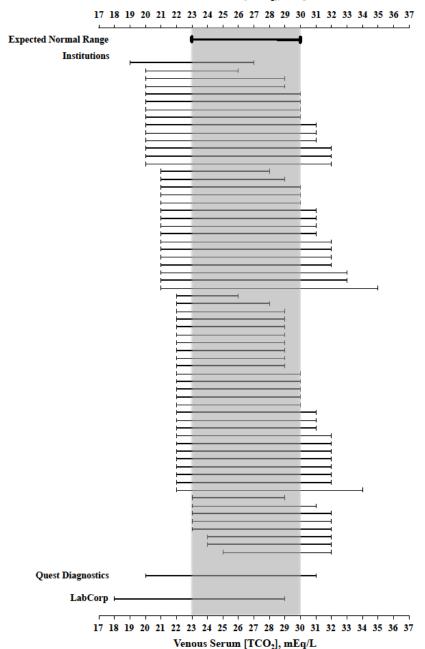
What is the Normal Range for Serum TCO₂?

Normal Range of Serum TCO₂ (1)


- Longstanding concern about substantial variability and wide limits of normal reported by clinical laboratories often on the order of 10-13 mEq/l, e.g., 20-31 mEq/l
- Have encountered many patients who had serum TCO₂ within the lower or upper end
 of reported normal range, in whom assessment of blood gases revealed data consistent
 with a cardinal acid-base disorder


Normal Range of Serum TCO₂ (2)

• 37-year-old woman with Sjögren syndrome referred for evaluation of active nephrolithiasis


 VBG revealed pH 7.32, PvCO2 38 mm Hg, and HCO₃- 19 mEq/L. Additional tests established the diagnosis of type 1 RTA. Treatment with potassium citrate reversed the activity of nephrolithiasis

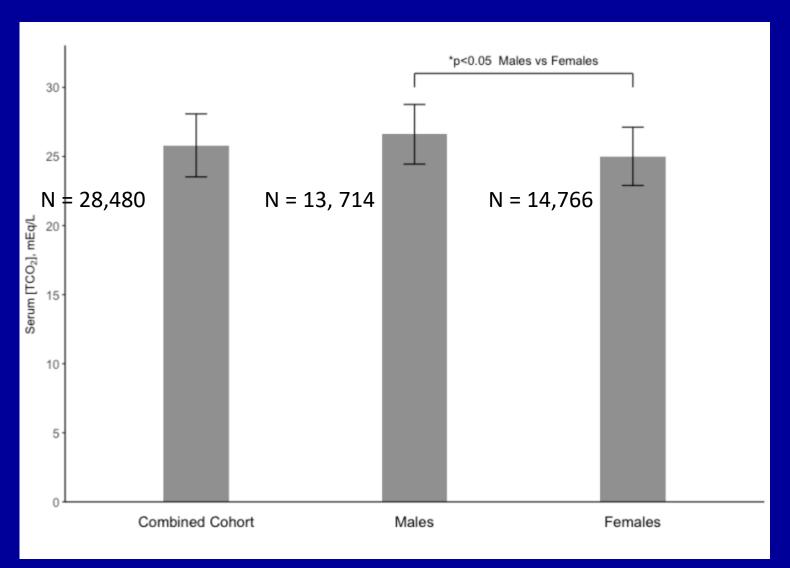
Normal Acid-Base Equilibrium in Man

Venous Serum [TCO2], mEq/L

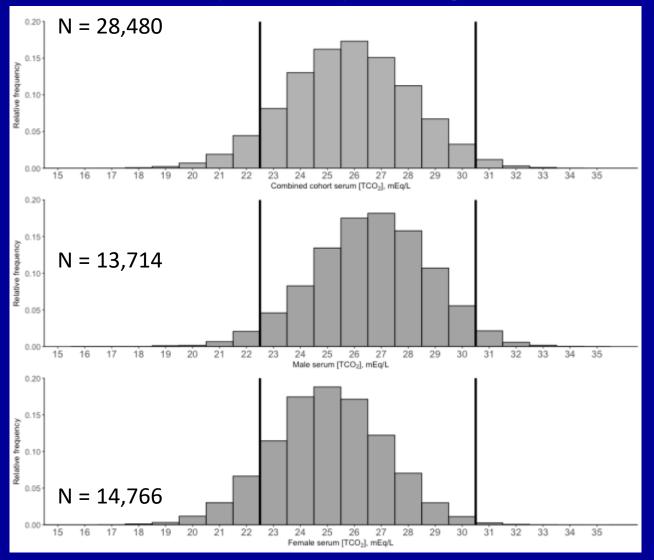
Reported vs Expected Serum TCO₂

Kraut JA and Madias NE. *CJASN* 2018;13:343-347

External Validation of Proposed Normal Range of Serum TCO₂


- We queried UCLA's xDR, a database containing records of ~4.5 million patients cared for at UCLA's hospitals and clinics
- Inclusion criteria:

Adults aged 18-40 years seen as outpatients for routine medical examination or immunization


Absence of kidney disease, pulmonary disease, heart failure, liver disease, cancer, diabetes mellitus, gastrointestinal disease, vomiting, diarrhea, or pregnancy

Not taking diuretics, base-containing substances, converting enzyme inhibitors, angiotensin receptor blockers, carbonic anhydrase inhibitors, or steroids

Mean (±SD) Serum TCO2 in Venous Blood in Apparently Healthy Younger Adults

Relative Frequency of Values for Serum TCO₂ in Venous Blood in Apparently Healthy Younger Adults

Combined cohort

Males

Females

Clinical States with High Prevalence of Acid-Base Disorders

- Heart failure
- COPD
- Asthma
- Hypertension
- Cirrhosis
- Gastrointestinal disorders
- Eating disorders
- Chronic alcoholism
- Diabetes mellitus
- Cancer
- CKD
- Organ transplantation

Key Points

- Acid-base disorders have major implications for patient outcomes
- Acid-base disorders are highly prevalent in many disease states
- An expansive serum electrolyte panel that includes Cl⁻ and TCO₂ is required for screening for acid-base disorders and for monitoring previously diagnosed acid-base disorders