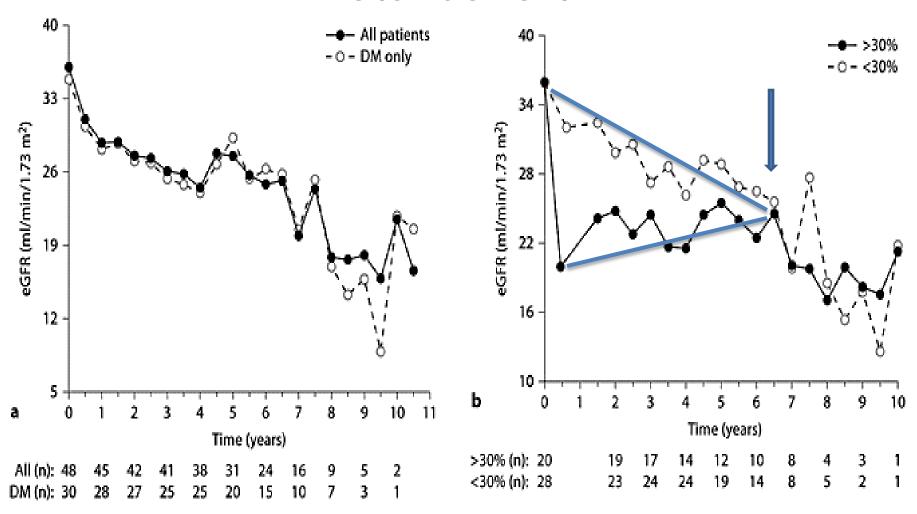
WORSENING OF RENAL FUNCTION AFTER RAS INHIBITION IN DECOMPENSATED HEART FAILURE: CLINICAL IMPLICATIONS

George Bakris, MD, FASH, FAHA, FASN
Professor of Medicine
Director, Comprehensive Hypertension Center
The University of Chicago Medicine
Chicago, Illinois

MAJOR KEY POINTS

- A small initial increase in serum creatinine (up to 30%) strongly correlates with slower CKD progression in diabetes
- In Heart Failure the same initial increase is an indicator of poor renal reserve and may be associated with higher short term CV event rates.


Baseline demographics and clinical characteristics use of RAS Blockers in Stage 3b CKD

	All patients	Diabetics only	Cr †>30%	Cr 1 <30%
Age, years	64.2 ± 11.5	66.5 ± 8.2	65.3 ± 11.8	63.4±11.4
Patients	48	30	20	28
Male, %	58.3	46.7	35*	75
Diabetes, %	62.5	100	65.0	60.7
SBP, mm Hg	151.7 ± 23.6	151.4 ± 22.7	159.75 ± 26.8+	145.9 ± 19.6
eGFR, ml/min/1.73 m ²	36.0 ± 14.3	34.9 ± 12.3	35.9 ± 13.1	36.2 ± 15.2
Urine protein ≤30 mg/dl, %	41.7	46.7	50	35.6
Black, %	93.8	96.7	95	92.9

Values are means \pm SD. * p = 0.008 vs. <30% †; + p = 0.044 vs. <30% †.

Hirsch, S et.al. Am.J.Nephrol. 36 (5):430-437, 2012.

Decline in Kidney Function Over Time in Total Cohort.

Hirsch, S et.al. Am.J.Nephrol. 36 (5):430-437, 2012.

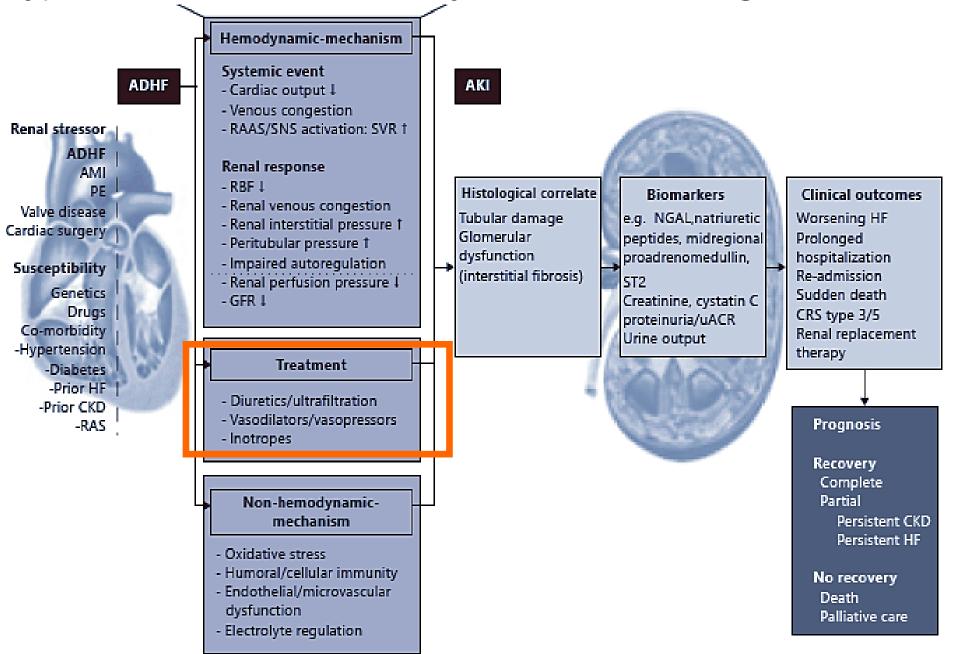
Staging of AKI for adults

	Serum	Creatinine	Criteria	Urine volume criteria
AKI stage 1 (R)	KDIGO 1.5–1.9 times baseline or \geq 0.3 mg/dl (\geq 26 μ mol/l) Increase within 48h	AKIN Increase≥0.3 mg/dl (26.5 µmol/l) or≥1.5- to 2-fold from baseline	RIFLE Increase×1.5 baseline or GFR decrease >25%	KDIGO/AKIN/ RIFLE <0.5ml/kg/h for 6–12 h
2 (I)	2.0–2.9 times baseline	Increase >2- to 3-fold from baseline	Increase×2 from baseline or GFR decreased >50%	<0.5ml/kg/h for 12 h
3 (F)	3.0 times baseline or increase in serum creatinine to≥4.0 mg/dl (354 µmol/l) or initiation of renal replacement therapy or, in patients <18 years, decrease in eGFR to <35ml/min per 1.73 m²	Increased >300% (>3-fold) from baseline, or ≥4.0 mg/dl (354mmol/l) with an acute increase of ≥0.5 mg/dl (44 µmol/l) or on renal replacement therapy	Increase × 3 from baseline, or serum creatinine >4mg/dl (>354 µmol/l) with an acute rise >0.5mg/dl (>44 µmol/l) or GFR decreased >75% d A. Davenport Kidney Int 26	<0.3ml/kg/h for 24 h or anuria for 12 h

The story of worsening renal function

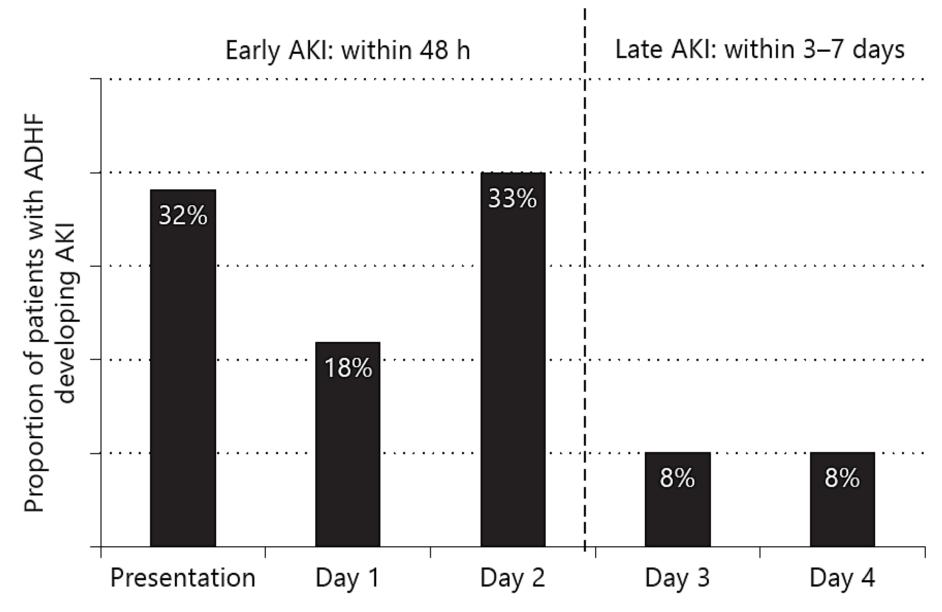
(i.e. change in serum creatinine ≥ 0.3 mg/dl)

Correlates and Impact on Outcomes of Worsening Renal Function in Patients ≥65 Years of Age With Heart Failure*


Harlan M. Krumholz, MD, Ya-Ting Chen, PhD, Viola Vaccarino, MD, PhD, Yun Wang, MS, Martha J. Radford, MD, W. David Bradford, PhD, and Ralph I. Horwitz, MD

Outcomes	Total	WRF Absent	WRF Present	Adjusted Estimate*
In-hospital mortality	68 (4%)	36 (3%)	32 (7%)	2.72 (1.62-4.58)
30-d mortality	123 (7%)	76 (6%)	47 (10%)	1.87 (1.25-2.80)
30-d readmission, all-cause	296 (18%)	201 (17%)	95 (20%)	1.29 (0.98-1.71)
30-d readmission, heart failure related	118 (7%)	80 (7%)	38 (8%)	1.17 (0.77-1.77)
6-month mortality	354 (21%)	235 (19%)	119 (25%)	1.56 (1.19-2.05)
6-month readmission, all-cause	790 (47%)	555 (46%)	235 (50%)	1.16 (0.93-1.44)
6-month readmission, heart failure related	380 (23%)	264 (22%)	116 (25%)	1.07 (0.82–1.39)
Length of hospital stay, mean (SD) (d)	7.55 (4.70)	6.93 (3.92)	9.14 (6.01)	2.28 (0.25)†
Hospital cost, mean (SD)	\$6,823 (\$5,175)	\$6,327 (\$4,874)	\$8,085 (\$5,665)	\$1,758 (\$287.2)†

^{*}Estimates were odds ratios and 95% confidence intervals for mortality and readmission outcomes, and regression coefficients and their standard errors for length of hospital stay and hospital cost outcomes; estimates adjusted for sex, age, diabetes, hypertension, rales, pulse, baseline creatinine, systolic blood pressure, and left ventricular ejection fraction.


 $t_p < 0.0001$.

Type I CRS: Acute Cardiac Dysfunction Leading to AKI

When does AKI occur in CRS Type I?

Breidthardt et al. Crit Care 2012 and Haase M et al. Contrib Nephrol 2013

CRS I: Outcomes Meta-Analysis

	Risk/stage1	Studies/ Patients	Injury/stage2	Studies/ Patients	Loss/stage 3	Studies/ Patients
Mortality	3.45 (2.25-5.31)	16/53,066	9.57 (6.31-14.50)	13/39,644	20.37 (13.19-31.48)	12/38,575
LOS _{ICU}	0.99 (0.65-1.33)	8/16,348	2.22 (0.89-3.55)	7/12,479	8.32(3.39-13.24)	7/12,479
LOS _{hosp}	3.51 (2.63-4.39)	10/17,713	8.32 (5.87-10.78)	9/13,844	18.41 (14.74-22.09)	9/13,844

Data are presented as risk ratio (95% CI) for mortality and weighted mean difference (95% CI) for LOS. AKI = AKI defined by the RIFLE, AKIN or KDIGO classifications; WRF = AKI defined as worsening of renal function; RRT = AKI defined as the use of renal replacement therapy; CI = confidence interval.

Risk Ratios across stages Weighted Mean Differences for LOS

Cardiorenal Med 2016;6:116-128

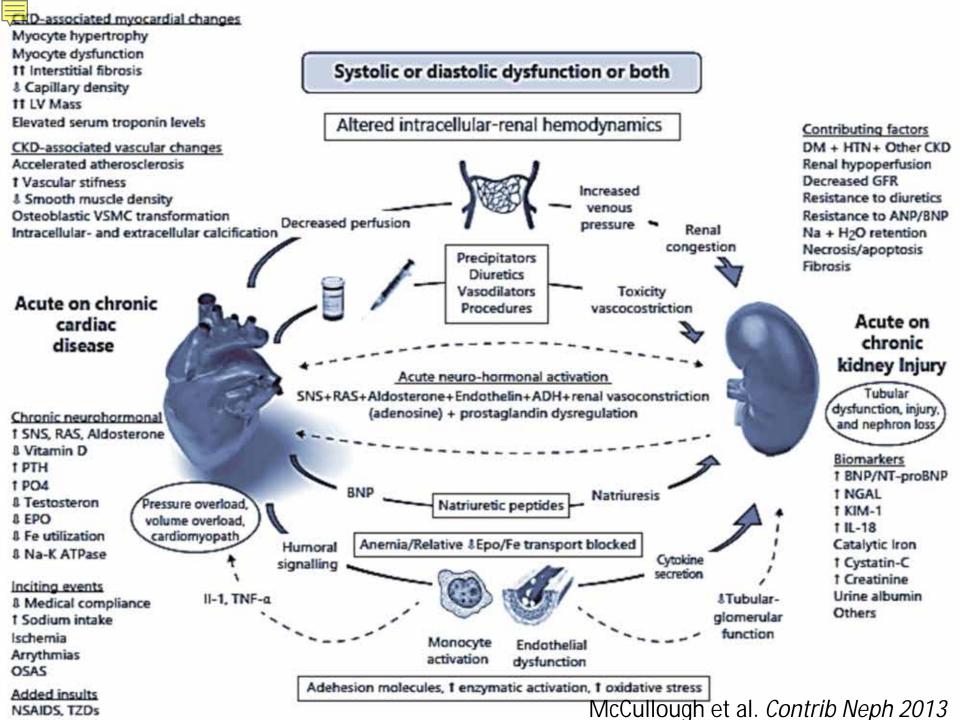


Table 1 Characteristics of patients included in the study by group

	Interven	tion group	Control	group	
	n	Mean ± SD	n	Mean ± SD	p
Age (years)	30	78.2 ± 7.8	17	74.2 ± 5.9	0.079
BMI (weight/height²)	28	27.5 ± 4.9	15	29.1 ± 4.5	0.316
Haemoglobin (g/dl)	30	10.6 ± 0.87	17	10.7 ± 1.02	0.735
Haematocrit (%)	30	31.7 ± 2.65	17	32.16 ± 2.85	0.547
Plasmatic creatinine (mg/dl)	30	1.97 ± 0.73	17	1.61 ± 0.36	0.068
Creatinine clearance (24-h) (ml/min/1.73 m ²)	30	31.97 ± 13.34	17	47.5 ± 8.74	< 0.001
Albuminury (mg/24 h)	28	0.39 ± 0.58	16	0.86 ± 1.23	0.130
Ejection fraction (%)	29	48.20 ± 16.28	17	47.41 ± 11.7	0.862
Time of heart failure diagnosis (years)	30	5.03 ± 3.95	17	4.29 ± 3.98	0.542
Angiotensin inhibitors treatment at admission					
Angiotensin-converting-enzyme inhibitor (mg) (Enalapril)	18	8.3 ± 5.7	6	5.8 ± 2.0	0.494
Angiotensin receptor antagonists (mg) (Losartan)	12	56.2 ± 35.6	11	52.3 ± 26.1	0.928
	n	%	n	%	P
Gender					
Male	16	59.3%	11	40.7%	0.449
Female	14	70.0%	6	30.0%	
NYHA Classification					
1	5	62.5%	3	37.5%	0.736
II	19	67.9%	9	32.1%	
III	6	54.5%	5	45.5%	
IV	-	-	-	-	
Diabetes					
No	18	69.2%	8	30.8%	0.391
Yes	12	57.1%	9	42.9%	

Pita-Fernandez, S et.al. Int J Clin Pract. 2014;68:1231-1240

Table 2 Changes in the parameters studied during follow-up in the treatment and control groups

	Intervention group			Control group				
	Admission Mean ± SD	1–3 months after discharge Mean ± SD	p	Relative change (%)	Admission Mean ± SD	1–3 months after discharge Mean ± SD	р	Relative change (%)
Haemoglobin (g/dl)	10.6 ± 0.9	11.5 ± 1.1	< 0.001	8%	10.6 ± 1.0	10.1 ± 1.6	0.198	-4.9%
Haematocrit (%)	31.7 ± 2.8	34.4 ± 3.1	< 0.001	8.6%	32.0 ± 2.9	30.4 ± 4.7	0.212	-4.9%
Plasmatic creatinine (mg/dl)	1.9 ± 0.7	1.7 ± 0.4	0.004	-15.1%	1.6 ± 0.4	1.5 ± 0.4	0.269	-6.3%
Creatinine dearance (24-h) (ml/min/1.73 m²)	32.5 ± 13.9	42.9 ± 20.7	0.001	32%	48.3 ± 8.8	41.7 ± 11.9	0.056	-13.5%
C-reactive protein (mg/dl)	3.2 ± 2.9	1.4 ± 1.9	0.008	-57.5%	1.9 ± 2.9	3.1 ± 5.9	0.560	6.2%
Homocysteine (mmol/L)	23.4 ± 9.0	25.1 ± 17.7	0.454	7.6%	22.2 ± 5.4	17.9 ± 8.6	0.208	-19.20%
Albuminury (mg/24 h)	$\textbf{0.43} \pm \textbf{0.6}$	0.7 ± 1.2	0.231	5.9%	0.6 ± 0.9	0.7 ± 1.2	0.537	9.40%
Insulin (mcU/ml)	13.4 ± 18.4	9.5 ± 3.9	0.286	-29%	12.3 ± 8.7	10.0 ± 10.8	0.132	18.40%
	Admission	After randomization	P		Admission	After randomization	p	
Angiotensin-converting-enzyme inhibitor (mg) (Enalapril)	8.3 ± 5.7	4.2 ± 2.8	0.047		5.8 ± 2.0	5.8 ± 2.0	0.999	
Angiotensin receptor antagonists (mg) (Losartan)	56.2 ± 35.6	28.1 ± 17.8	0.008		52.3 ± 26.1	52.3 ± 26.1	0.999	

SD, standard deviation.

SOLVD Revisited: \triangle SCr Response to ACE-I and Survival

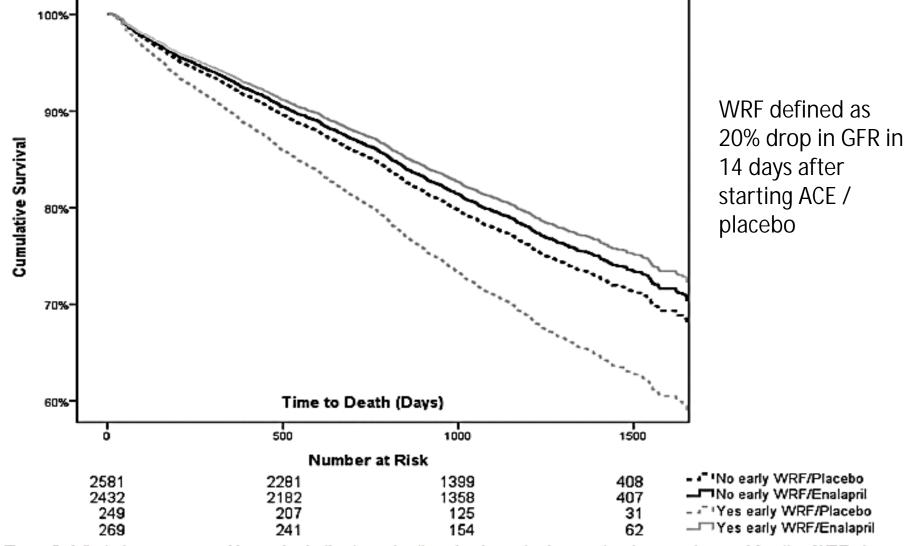
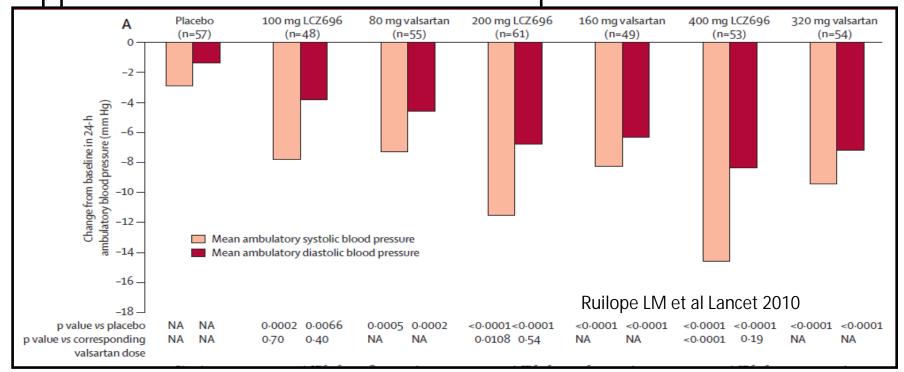



Figure 2. Adjusted curves grouped by randomization to enalapril or placebo and subsequent early worsening renal function (WRF) status in patients who did not discontinue or dose reduce the study drug in proximity to WRF. Early WRF was defined as a 20% reduction in glomerular filtration rate (GFR) from baseline to 14 days after randomization. Covariates were adjusted for the following: age; race; ejection fraction; heart rate; diastolic blood pressure; New York Heart Association class; serum sodium level; estimated GFR; history of diabetes, hypertension, stroke, or myocardial infarction; loop diuretic; potassium-sparing diuretic; digoxin; and β-blocker use.

Neprilysin:

- Entresto: Neutral Endopeptidase Prevents degradation of vaso-active peptides (e.g. natri-uretics, bradykinin, adrenomedullin)
 - Neprilysin-inhibition + ACE-I = lots of Angioedema
 - Neprilysin-inhibition leads to less vaso-constriction, less sodium retention and less maladaptive cardiac remodeling

Supplies nice reduction of MAP – compared to ARB alone

Neprilysin Inhibition (PARADIGM)

8,442 subject with Class II, III and IV HF (EF < 40%)

Randomized, Double-blind, International (Neprilysin+ARB vs. ACE)

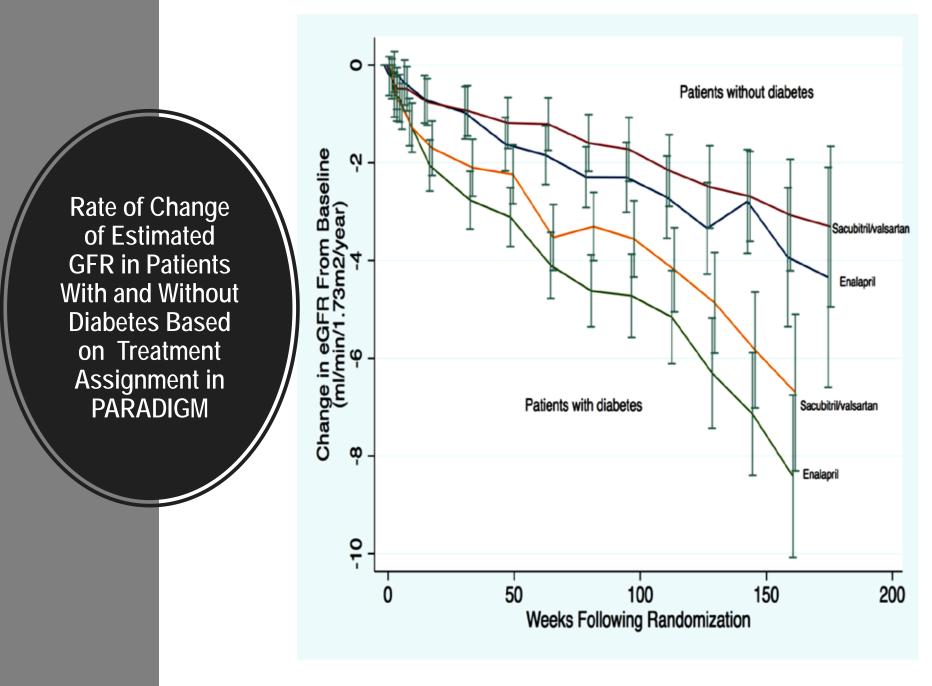
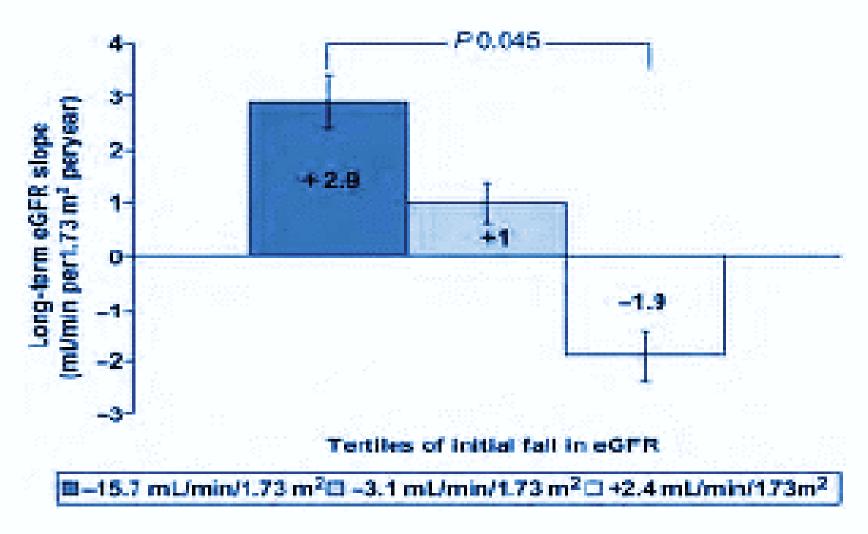

Primary endpoint: CV death or CHF hospitalization

Table 2. Primary and Secondary Outcomes.*

Stopped Early due to overwhelming benefitless adverse renal outcomes (p=NS for drop in eGFR or new ESRD/RRT)

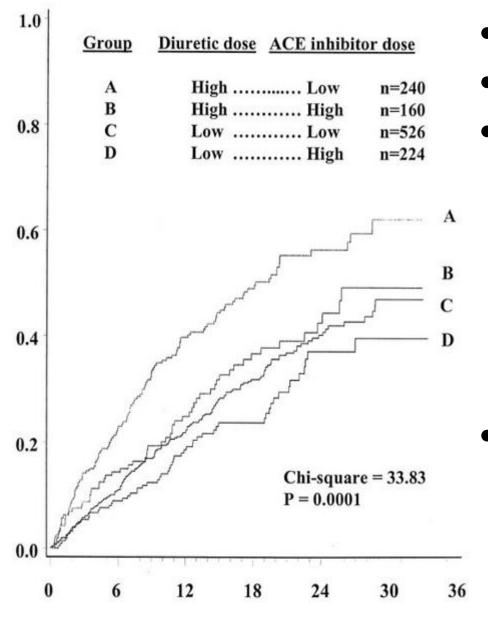
Number needed to treat 35 – to prevent all cause mortality


Outcome	LCZ696 (N=4187)	Enalapril (N = 4212)	Hazard Ratio or Difference (95% CI)	P Value
Primary composite outcome — no. (%)				
Death from cardiovascular causes or first hospitalization for worsening heart failure	914 (21.8)	1117 (26.5)	0.80 (0.73–0.87)	<0.001
Death from cardiovascular causes	558 (13.3)	693 (16.5)	0.80 (0.71-0.89)	< 0.001
First hospitalization for worsening heart failure	537 (12.8)	658 (15.6)	0.79 (0.71–0.89)	< 0.001
Secondary outcomes — no. (%)				
Death from any cause	711 (17.0)	835 (19.8)	0.84 (0.76–0.93)	< 0.001
Change in KCCQ clinical summary score at 8 mo†	-2.99±0.36	-4.63±0.36	1.64 (0.63–2.65)	0.001
New-onset atrial fibrillation†	84 (3.1)	83 (3.1)	0.97 (0.72–1.31)	0.83
Decline in renal function§	94 (2.2)	108 (2.6)	0.86 (0.65–1.13)	0.28
N ENGL J MED 371	I;11 NEJM.OR	G SEPTEMBER 11	1, 2014	

Packer M et.al. Lancet Diabetes and Endo In Press 2018

Spironolactone: Similar Effect

 Those with the biggest initial drop in eGFR post-spiro had the best 1 yr eGFRs


MAJOR SUMMARY POINTS

- The kidney's response to RAAS blockade serves as a stress test of its hemodynamic integrity
- Injured and failing kidneys are less likely to be able to mount the appropriate physiologic response
- Larger increases in SCr (>30%) due to RAAS are a signal for morbidity / mortality
- Novel way to ascertain renal reserve capacity

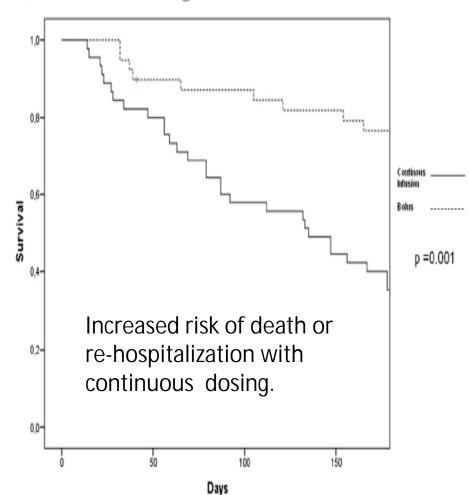
Total Mortality

Dose of Diuretics and ACE and Mortality

- 1153 pts advanced CHF
- Post-Hoc
- PRAISE Amlodipine trial
 - Furosemide (mg) 170 vs 60
 - Bumetanide (mg) 4.7 vs 1.3
 - Metolazone (%-use) 25 vs 11
 - Captopril (mg) 153 vs 46
 - Enalapril (mg) 27 vs 7
 - Lisinopril (mg) 26 vs. 7.8
- High dose diuretics and use of metolazone were independently associated with mortality

Continuous versus bolus intermittent loop diuretic infusion in acutely decompensated heart failure: a prospective randomized trial

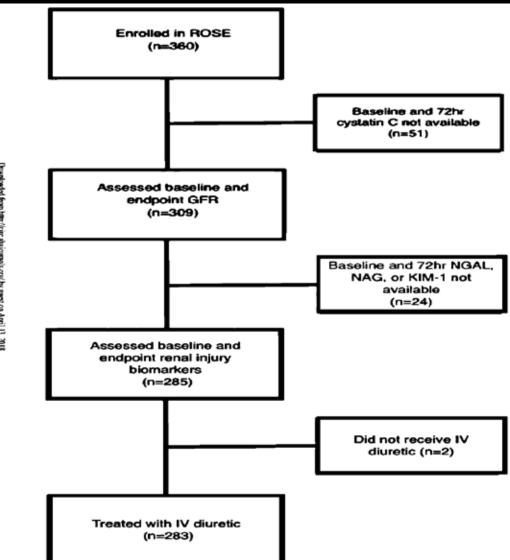
Alberto Palazzuoli^{1*}, Marco Pellegrini¹, Gaetano Ruocco¹, Giuseppe Martini¹, Beatrice Franci¹, Maria Stella Campagna¹, Marilyn Gilleman¹, Ranuccio Nuti¹, Peter A McCullough² and Claudio Ronco³


Table 2 Comparison of biochemical measures and urine output after the randomized treatment period of approximately 120 h

	Continuous infusion	Bolus	P-value
Urine output/24 h (mL)	2295 ± 775	2090 ± 421	< 0.002
Serum creatinine (mg/dl)	1.78 ± 0.6	1.34 ± 0.3	<0.0001
eGFR (mL/min/1.73 m ²)	40.6 ± 10.5	50.4 ± 11.4	< 0.01
BUN (mg/dl)	100 ± 60	69±31	< 0.02
BNP (pg/mL)	723 ± 497	822 ± 548	< 0.05
Serum sodium (mEq/L)	138 ± 4	135 ± 16	NS
Serum potassium (mEq/L)	3.6 ± 0.8	4.0 ± 0.7	< 0.04

Results are presented as mean ± SD. eGFR, estimated glomerular filtration rate; BUN, blood urea nitrogen; BNP, B-type natriuretic peptide; NS, not significant.

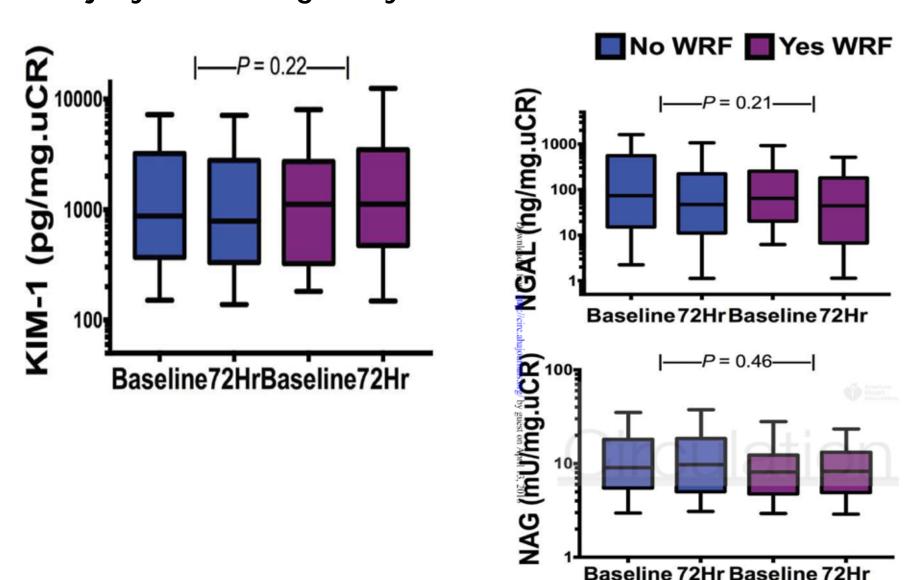
Table 4 Secondary endpoints in the continuous infusion versus bolus arm


	Continuous infusion	Bolus	<i>P</i> -value
Acute kidney injury	22%	15%	0.30
Hypertonic saline solution	33%	18%	0.01
Inotropes infusion	35%	23%	0.02
Length of hospital stay (days), mean ± SD	14 ± 5	11 ± 5	<0.03
Death or rehospitalization	58%	23%	0.001
Weight loss (kg), mean ± SD	-4.1 ± 1,9	-3.5 ± 2.4	0.23

Palazzuoli et al. Critical Care 2014, 18:R134

Worsening Renal Function in Acute Heart Failure Patients Undergoing Aggressive Diuresis NOT Associated with Tubular Injury

Consort Design and Flow of Study


Downloaded from http://circ.ahajournois.org/ by guest on April 13, 2018

Baseline Characteristics of the Study Population

Characteristics	Study Cohort (N=283)	WRF (<i>N</i> =60)	No WRF (N=223)	P
Demographics				
Age, years	70 (62,79)	73 (63,82)	69 (62,79)	0.14
Male sex, %	75	73	75	0.81
White, %	76	83	74	0.13
Clinical Variables	•	•		•
SBP, mmHg	114 (103,126)	119 (109,134)	113 (102,125)	0.02*
Edema ≥2+, %	71	77	69	0.26
Orthopnea, %	89	95	88	0.13
JVP ≥8 cm H ₂ O, %	96	97	95	0.68
Rales, %	55	60	54	0.38
HF Hospitalization, %	67	61	69	0.25
LVEF %	33 (20,51)	34 (25,53)	30 (20,51)	0.40
LVEF <50%, %	71	75	70	0.43
IHD, %	58	65	57	0.24
DM II, %	55	58	54	0.57
AF/AFL, %	58	63	57	0.34
ICD, %	45	37	47	0.15

Anniau i et.ai. Circulation Jan 2016 IU. 1101/CIRCULATIONADA. 11/.U30112

Baseline and 72 hour Biomarkers of Kidney Tubular Injury According to Cystatin-C based WRF Status

Ahmad T et.al. Circulation Jan 2018 10.1161/CIRCULATIONAHA.117.030112

CONSENSUS ON DIURETICS

- Comparisons between intravenous bolus and continuous infusion revealed no clear differences in outcomes such as weight loss, urine output, or change in renal function.
- Perhaps a signal for more harm with continuous but hard to decipher a true difference
- Combination of diuretics may lead to increased UOP but also increased risk of hypoNa+

CONCLUSIONS

- Cardio-Renal Interactions are Complex
- Response to RAAS may predict outcomes in the setting of CHF.
- Large increases >0.3 mg/dl in creatinine acutely are associated with higher mortality in HefRef hospitalized patients but not in other settings. The increased creatinine is a marker of underlying poor renal reserve.
- The Role Diuretic Dosing and RAS use in CRS 1 is increasingly clearer-better to protocolized intermittent diuretic dosing
- Clear benefits of ARB/Neprilysin combo over RAS blockade.